### Refine

#### Year of publication

#### Document Type

- Article (reviewed) (39)
- Conference Proceeding (19)
- Other (5)
- Article (unreviewed) (4)
- Book (1)
- Part of a Book (1)
- Patent (1)

#### Keywords

- Lithiumbatterie (9)
- Brennstoffzelle (7)
- Batterie (5)
- Elektrochemie (4)
- Hochtemperaturbrennstoffzelle (3)
- Lithium-Ionen-Akkumulator (3)
- Durchfluss (2)
- Elektrode (2)
- Elektrolyt (2)
- Festoxidbrennstoffzelle (2)

A two-dimensional single-phase model is developed for the steady-state and transient analysis of polymer electrolyte membrane fuel cells (PEMFC). Based on diluted and concentrated solution theories, viscous flow is introduced into a phenomenological multi-component modeling framework in the membrane. Characteristic variables related to the water uptake are discussed. A Butler–Volmer formulation of the current-overpotential relationship is developed based on an elementary mechanism of electrochemical oxygen reduction. Validated by using published V–I experiments, the model is then used to analyze the effects of operating conditions on current output and water management, especially net water transport coefficient along the channel. For a power PEMFC, the long-channel configuration is helpful for internal humidification and anode water removal, operating in counterflow mode with proper gas flow rate and humidity. In time domain, a typical transient process with closed anode is also investigated.

The state-of-the-art electrochemical impedance spectroscopy (EIS) calculations have not yet started from fully multi-dimensional modeling. For a polymer electrolyte membrane fuel cell (PEMFC) with long flow channel, the impedance plot shows a multi-arc characteristic and some impedance arcs could merge. By using a step excitation/Fourier transform algorithm, an EIS simulation is implemented for the first time based on the full 2D PEMFC model presented in the first part of this work. All the dominant transient behaviors are able to be captured. A novel methodology called ‘configuration of system dynamics’, which is suitable for any electrochemical system, is then developed to resolve the physical meaning of the impedance spectra. In addition to the high-frequency arc due to charge transfer, the Nyquist plots contain additional medium/low-frequency arcs due to mass transfer in the diffusion layers and along the channel, as well as a low-frequency arc resulting from water transport in the membrane. In some case, the impedance spectra appear partly inductive due to water transport, which demonstrates the complexity of the water management of PEMFCs and the necessity of physics-based calculations.

Combined heat and power production (CHP) based on solid oxide fuel cells (SOFC) is a very promising technology to achieve high electrical efficiency to cover power demand by decentralized production. This paper presents a dynamic quasi 2D model of an SOFC system which consists of stack and balance of plant and includes thermal coupling between the single components. The model is implemented in Modelica® and validated with experimental data for the stack UI-characteristic and the thermal behavior. The good agreement between experimental and simulation results demonstrates the validity of the model. Different operating conditions and system configurations are tested, increasing the net electrical efficiency to 57% by implementing an anode offgas recycle rate of 65%. A sensitivity analysis of characteristic values of the system like fuel utilization, oxygen-to-carbon ratio and electrical efficiency for different natural gas compositions is carried out. The result shows that a control strategy adapted to variable natural gas composition and its energy content should be developed in order to optimize the operation of the system.

In the dual membrane fuel cell (DM-Cell), protons formed at the anode and oxygen ions formed at the cathode migrate through their respective dense electrolytes to react and form water in a porous composite layer called dual membrane (DM). The DM-Cell concept was experimentally proven (as detailed in Part I of this paper). To describe the electrochemical processes occurring in this novel fuel cell, a mathematical model has been developed which focuses on the DM as the characteristic feature of the DM-Cell. In the model, the porous composite DM is treated as a continuum medium characterized by effective macro-homogeneous properties. To simulate the polarization behavior of the DM-Cell, the potential distribution in the DM is related to the flux of protons and oxygen ions in the conducting phases by introducing kinetic and transport equations into charge balances. Since water pressure may affect the overall formation rate, water mass balances across the DM and transport equations are also considered. The satisfactory comparison with available experimental results suggests that the model provides sound indications on the effects of key design parameters and operating conditions on cell behavior and performance.