Refine
Document Type
Conference Type
- Konferenzartikel (4)
Language
- English (4)
Has Fulltext
- no (4)
Is part of the Bibliography
- yes (4)
Keywords
- Niedrige Energie (1)
- Sensortechnik (1)
- Wasserstand (1)
Institute
Open Access
- Closed Access (3)
- Open Access (1)
Due to climate change and scarcity of water reservoirs, monitoring and control of irrigation systems is now becoming a major focal area for researchers in Cyber-Physical Systems (CPS). Wireless Sensor Networks (WSNs) are rapidly finding their way in the field of irrigation and play the key role as data gathering technology in the domain of IoT and CPS. They are efficient for reliable monitoring, giving farmers an edge to take precautionary measures. However, designing an energy-efficient WSN system requires a cross-layer effort and energy-aware routing protocols play a vital role in the overall energy optimization of a WSN. In this paper, we propose a new hierarchical routing protocol suitable for large area environmental monitoring such as large-scale irrigation network existing in the Punjab province of Pakistan. The proposed protocol resolves the issues faced by traditional multi-hop routing protocols such as LEACH, M-LEACH and I-LEACH, and enhances the lifespan of each WSN node that results in an increased lifespan of the whole network. We used the open-source NS3 simulator for simulation purposes and results indicate that our proposed modifications result in an average 27.8% increase in lifespan of the overall WSN when compared to the existing protocols.
Climate change and resultant scarcity of water are becoming major challenges for countries around the world. With the advent of Wireless Sensor Networks (WSN) in the last decade and a relatively new concept of Internet of Things (IoT), embedded systems developers are now working on designing control and automation systems that are lower in cost and more sustainable than the existing telemetry systems for monitoring. The Indus river basin in Pakistan has one of the world's largest irrigation systems and it is extremely challenging to design a low-cost embedded system for monitoring and control of waterways that can last for decades. In this paper, we present a hardware design and performance evaluation of a smart water metering solution that is IEEE 802.15.4-compliant. The results show that our hardware design is as powerful as the reference design, but allows for additional flexibility both in hardware and in firmware. The indigenously designed solution has a power added efficiency (PAE) of 24.7% that is expected to last for 351 and 814 days for nodes with and without a power amplifier (PA). Similarly, the results show that a broadband communication (434 MHz) over more than 3km can be supported, which is an important stepping stone for designing a complete coverage solution of large-scale waterways.
Modeling of Random Variations in a Switched Capacitor Circuit based Physically Unclonable Function
(2020)
The Internet of Things (IoT) is expanding to a wide range of fields such as home automation, agriculture, environmental monitoring, industrial applications, and many more. Securing tens of billions of interconnected devices in the near future will be one of the biggest challenges. IoT devices are often constrained in terms of computational performance, area, and power, which demand lightweight security solutions. In this context, hardware-intrinsic security, particularly physically unclonable functions (PUFs), can provide lightweight identification and authentication for such devices. In this paper, random capacitor variations in a switched capacitor PUF circuit are used as a source of entropy to generate unique security keys. Furthermore, a mathematical model based on the ordinary least square method is developed to describe the relationship between random variations in capacitors and the resulting output voltages. The model is used to filter out systematic variations in circuit components to improve the quality of the extracted secrets.
Environmental Monitoring is an attractive application field for Wireless Sensor Network (WSN). Water Level Monitoring helps to increase the efficiency of water distribution and management. In Pakistan, the world’s largest irrigation system covers 90.000 km of channels which needs to be monitored and managed on different levels. Especially the sensor systems for the small distribution channels need to be low energy and low cost. The distribution presents a technical solution for a communication system which is developed in a research project being co-funded by German Academic Exchange Service (DAAD). The communication module is based on IEEE-802.15.4 transceivers which are enhanced through Wake-On-Radio (WOR) to combine low-energy and real-time behavior. On higher layers, IPv6 (6LoWPAN) and corresponding routing protocols like Routing Protocol for Low power and Lossy Networks (RPL) can extend range of the network. The data are stored in a database and can be viewed online via a web interface. Of course, also automatic data analysis can be performed.