UNITS
Refine
Year of publication
Document Type
- Bachelor Thesis (39)
Has Fulltext
- yes (39)
Is part of the Bibliography
- no (39)
Keywords
- IT-Sicherheit (13)
- Computersicherheit (3)
- Künstliche Intelligenz (3)
- Malware (3)
- Netzwerksicherheit (3)
- Security (3)
- Datensicherung (2)
- Deepfake (2)
- AES (1)
- API (1)
Institute
Open Access
- Closed Access (22)
- Closed (10)
- Open Access (7)
- Diamond (2)
Ransomware stellt eine erhebliche Bedrohung für die Cybersicherheit dar und betrifft weltweit zahlreiche Unternehmen. Diese Bachelorarbeit untersucht die Sicherheitskonzepte von Backup-Lösungen mit einem besonderen Fokus auf Veeam Backup & Replication. Es werden verschiedene Angriffsvektoren auf Backup-Systeme, darunter Netzwerke, Softwarekomponenten, Datenbanken und Authentifizierungsmethoden analysiert. Darüber hinaus werden Best Practices für die Implementierung von ransomware-resistenten Backup-Lösungen vorgestellt, wie z.B. die 3-2-1-Regel und die 3-2-1-1-0-Strategie, Air-Gap-Backups und unveränderliche Backups.
Die Analyse zeigt, dass Veeam robuste Sicherheitsfunktionen bietet, jedoch auch spezifische Schwach- stellen aufweist, die durch bekannte Sicherheitslücken ausgenutzt werden können. Diese Schwachstellen werden transparent behandelt und durch schnelle Reaktionen des Herstellers gemildert. Die Arbeit bietet eine umfassende Analyse der Resilienz von Veeam gegenüber Ransomware-Angriffen.
Implementation and Evaluation of an Assisting Fuzzer Harness Generation Tool for AUTOSAR Code
(2024)
The digitalization in vehicles tends to add more connectivity such as over-the-air (OTA) updates. To achieve this digitization, each ECU (Electronic Control Unit) becomes smarter and needs to support more and more different externally available protocols such as TLS, which increases the attack surface for attackers. To ensure the security of a vehicle, fuzzing has proven to be an effective method to discover memory-related security vulnerabilities. Fuzzing the software run- ning on a ECU is not an easy task and requires a harness written by a human. The author needs a deep understanding of the specific service and protocol, which is time consuming. To reduce the time needed by a harness author, this thesis aims to develop FuzzAUTO, the first assistant harness generation tool targeting the AUTOSAR (AUTomotive Open System ARchitecture) BSW (Basic Software) to support manual harness generation.
KI-gestützte Cyberangriffe
(2023)
Die Fortschritte im Bereich der künstlichen Intelligenz (KI) und des Deep Learning haben in den letzten Jahren enorme Fortschritte gemacht. Insbesondere Technologien wie Large Language Models (LLMs) machen KI-Technologie innerhalb kurzer Zeit zugänglich für die Allgemeinheit. Die Generierung von Text, Bild und Sprache durch künstliche Intelligenz erzielt innerhalb kurzer Zeit gute Ergebnisse. Parallel zu dieser Entwicklung hat die Cyberkriminalität in den vergangenen Jahren im Bereich der KI zugenommen. Cyberangriffe verursachen im Zuge der Digitalisierung größeren Schaden und Angriffe entwickeln sich kontinuierlich weiter, um bestehende Schutzmaßnahmen zu umgehen.
Diese Arbeit bietet eine Einführung in das Themengebiet KI-gestützte Cyberangriffe. Sie präsentiert aktuelle KI-gestützte Cyberangriffsmodelle und analysiert, inwiefern diese für Anfänger*innen in der Cyberkriminalität zugänglich sind.
Die Bachelorarbeit „Forensic Chain – Verwaltung digitaler Spuren in Deutschland“ untersucht die Anwendung eines Blockchain-basierten Chain of Custody Systems im deutschen rechtlichen und regulatorischen Kontext. Die digitale Forensik, die sich mit der Sicherung und Analyse digitaler Spuren befasst, gewinnt an Bedeutung, da kriminelle Aktivitäten vermehrt im digitalen Raum stattfinden. Die Blockchain-Technologie bietet transparente und unveränderliche Aufzeichnungen, die sich für die Speicherung von Informationen im Zusammenhang mit digitalen Beweismitteln eignen. Das Hautpziel der Arbeit besteht darin, die Umsetzung eines Chain of Custody Prozesses im Forensic Chain System zu untersuchen und die Eignung dieses Systems im deutschen Raum zu bewerten. Hierfür wird ein Prototyp des Forensic Chain Systems entwickelt, um das erstellte Konzept zu testen. Die Ergebnisse tragen zum Verständnis der Wichtigkeit der digitalen Forensik in Deutschland bei und bieten Einblicke in die Einführung von Blockchain-basierten Chain of Custody-Systemen in diesem Bereich. Sie leisten einen Beitrag zur Weiterentwicklung der digitalen Forensik.
Das automatisierte Erkennen von Schwachstellen wird immer wichtiger. Gerade bei der Softwareentwicklung werden immer häufiger Schwachstellenscanner eingesetzt. Das Ziel der vorliegenden Arbeit ist es einen Überblick zu erhalten, welche Schwachstellenscanner für Webanwendungen existieren und wie sinnvoll deren Einsatz ist. Um diese Frage zu beantworten, werden vier auf dem Markt verfügbare Schwachstellenscanner getestet. Aus der bisherigen Infrastruktur von M und M Software werden Anforderungen und Selektionskriterien abgeleitet. In zwei Testphasen werden verschiedene Schwachstellenscanner analysiert und bewertet wie gut sie die Kriterien erfüllen. Am Ende wird bewertet, ob der Einsatz eines Schwachstellenscanners in der Infrastruktur sinnvoll ist. Neben dieser Analyse wird außerdem untersucht welche Chancen die AI-Technologie für Schwachstellenscanner bietet.
Diese Bachelorthesis behandelt die Entwicklung eines Prototyps zur Identifizierung und Verhinderung von Angriffen mithilfe von KI- und ML-Modellen. Untersucht werden die Leistungsfähigkeit verschiedener theoretischer Modelle im Kontext der Intrusion Detection, wobei Machine-Learning-Modelle wie Entscheidungsbäume, Random Forests und Naive Bayes analysiert werden. Die Arbeit betont die Relevanz der Datensatzauswahl, die Vorbereitung der Daten und bietet einen Ausblick auf zukünftige Entwicklungen in der Angriffserkennung.
Die folgende Arbeit thematisiert ein Konzept zur Automatisierung von Firewall-Audits und die Implementierung eines Tools zur Durchführung. Für das Audit relevante Aspekte von NGFWs werden ausgewählt und näher erläutert. Diese bestehen aus der Objektdatenbank, Firewall-Regelwerken und VPN-Konfigurationen. Die Analyse der Daten basiert auf einerseits eigens erstellten Kriterien, andererseits auf Empfehlungen des BSI und des NIST. Zusätzlich wird auf Basis von NIST Recommended Practices und dem CVSS der „Awareness Score“ eingeführt, der auf Fehlkonfigurationen innerhalb des Firewall-Regelwerks aufmerksam machen soll. Das Konzept für das Tool sieht vor, Firewalls mehrerer Hersteller, darunter Cisco, Checkpoint und Sophos, auditieren zu können. Die Implementierung wurde aus zeitlichen Gründen nur für Firewalls des Herstellers Cisco durchgeführt. Für die Analyse wird ein einheitliches Firewall-Modell erzeugt. So sollen auch Firewalls anderer Hersteller zu dem Tool hinzugefügt werden können. Die Ergebnisse des Audits werden in einem Bericht dargestellt.
Künstliche Intelligenzen, Deep Learning und Machine-Learning-Algorithmen sind im digitalen Zeitalter zu einem Punkt gekommen, in dem es schwer ist zu unterscheiden, welche Informationen und Quellen echt sind und welche nicht. Der Begriff „Deepfakes“ wurde erstmals 2017 genutzt und hat bereits 2018 mit einer App bewiesen, wie einfach es ist, diese Technologie zu verwenden um mit Videos, Bildern oder Ton Desinformationen zu verbreiten, politische Staatsoberhäupter nachzuahmen oder unschuldige Personen zu deformieren. In der Zwischenzeit haben sich Deepfakes bedeutend weiterentwickelt und stellen somit eine große Gefahr dar.
Diese Arbeit bietet eine Einführung in das Themengebiet Deepfakes. Zudem behandelt sie die Erstellung, Verwendung und Erkennung von Deepfakes, sowie mögliche Abwehrmaßnahmen und Auswirkungen, welche Deepfakes mit sich bringen.
In dieser Forschungsarbeit wird die Datensicherheit von Microsoft Azure analysiert und bewertet. Die Bewertung findet dabei aus der Sicht von Unternehmen statt. Im ersten Abschnitt wird zunächst der grundlegende Aufbau und die unterschiedlichen Formen des Cloud Computing beschrieben. Im zweiten Teil wird ein Vergleich der drei größten Cloud Anbieter vollzogen. Der letzte Teil besteht aus der Evaluation der Datensicherheit von Azure, wobei auf Aspekte wie Datenschutz, Bedrohungen und Schutzmaßnahmen eingegangen wird. Abschließend wird eine Empfehlung für das Unternehmen Bechtle GmbH Offenburg IT-Systemhaus abgegeben.
Im Verlauf der Arbeit stellt sich heraus, dass Azure eine ausreichende Datensicherheit bieten kann. Allerdings wird deutlich, dass durch die Kombination von mehreren Nebenfaktoren wie das Patch-Verhalten oder die Antwortzeit auf Sicherheitsschwachstellen seitens Microsofts, eine große Gefahr für die Daten von Unternehmen entstehen kann. Demnach ist Microsoft als Anbieter ein größeres Problem für die Sicherheit von Daten in Azure als der Cloud-Dienst selbst.
Diese Thesis beschäftigt sich mit den Techniken von Code Injection und API Hooking, die von Malware verwendet werden, um sich in laufende Prozesse einzuschleusen und deren Verhalten zu manipulieren. Darüber hinaus erklärt sie die Grundlagen der Betriebssystemarchitektur, der DLLs, der Win32 API und der PE-Dateien, die für das Verständnis dieser Techniken notwendig sind. Die Thesis stellt verschiedene Methoden von Code Injection und API Hooking vor, wie z.B. DLL Injection, PE Injection, Process Hollowing, Inline Hooking und IAT Hooking, und zeigt anhand von Codebeispielen, wie sie funktionieren. Des Weiteren wird auch beschrieben, wie man Code Injection und API Hooking mithilfe verschiedene Tools und Techniken wie VADs, Speicherforensik und maschinelles Lernen erkennen und verhindern kann. Die Thesis diskutiert außerdem mögliche Gegenmaßnahmen, die das Betriebssystem oder die Anwendungen anwenden können, um sich vor Code Injection und API Hooking zu schützen, wie z.B. ASLR, DEP, ACG, IAF und andere. Zuletzt wird mit einer Zusammenfassung und einem Ausblick auf die zukünftigen Herausforderungen und Möglichkeiten in diesem Bereich abgeschlossen.