UNITS
Refine
Year of publication
Document Type
- Bachelor Thesis (34)
Has Fulltext
- yes (34)
Is part of the Bibliography
- no (34)
Keywords
- IT-Sicherheit (11)
- Netzwerksicherheit (3)
- Security (3)
- Computersicherheit (2)
- Künstliche Intelligenz (2)
- Malware (2)
- AES (1)
- API (1)
- AVD (1)
- Analyse (1)
Institute
Open Access
- Closed Access (21)
- Open Access (7)
- Closed (6)
- Diamond (2)
Diese Bachelorthesis behandelt die Entwicklung eines Prototyps zur Identifizierung und Verhinderung von Angriffen mithilfe von KI- und ML-Modellen. Untersucht werden die Leistungsfähigkeit verschiedener theoretischer Modelle im Kontext der Intrusion Detection, wobei Machine-Learning-Modelle wie Entscheidungsbäume, Random Forests und Naive Bayes analysiert werden. Die Arbeit betont die Relevanz der Datensatzauswahl, die Vorbereitung der Daten und bietet einen Ausblick auf zukünftige Entwicklungen in der Angriffserkennung.
Die folgende Arbeit thematisiert ein Konzept zur Automatisierung von Firewall-Audits und die Implementierung eines Tools zur Durchführung. Für das Audit relevante Aspekte von NGFWs werden ausgewählt und näher erläutert. Diese bestehen aus der Objektdatenbank, Firewall-Regelwerken und VPN-Konfigurationen. Die Analyse der Daten basiert auf einerseits eigens erstellten Kriterien, andererseits auf Empfehlungen des BSI und des NIST. Zusätzlich wird auf Basis von NIST Recommended Practices und dem CVSS der „Awareness Score“ eingeführt, der auf Fehlkonfigurationen innerhalb des Firewall-Regelwerks aufmerksam machen soll. Das Konzept für das Tool sieht vor, Firewalls mehrerer Hersteller, darunter Cisco, Checkpoint und Sophos, auditieren zu können. Die Implementierung wurde aus zeitlichen Gründen nur für Firewalls des Herstellers Cisco durchgeführt. Für die Analyse wird ein einheitliches Firewall-Modell erzeugt. So sollen auch Firewalls anderer Hersteller zu dem Tool hinzugefügt werden können. Die Ergebnisse des Audits werden in einem Bericht dargestellt.
Künstliche Intelligenzen, Deep Learning und Machine-Learning-Algorithmen sind im digitalen Zeitalter zu einem Punkt gekommen, in dem es schwer ist zu unterscheiden, welche Informationen und Quellen echt sind und welche nicht. Der Begriff „Deepfakes“ wurde erstmals 2017 genutzt und hat bereits 2018 mit einer App bewiesen, wie einfach es ist, diese Technologie zu verwenden um mit Videos, Bildern oder Ton Desinformationen zu verbreiten, politische Staatsoberhäupter nachzuahmen oder unschuldige Personen zu deformieren. In der Zwischenzeit haben sich Deepfakes bedeutend weiterentwickelt und stellen somit eine große Gefahr dar.
Diese Arbeit bietet eine Einführung in das Themengebiet Deepfakes. Zudem behandelt sie die Erstellung, Verwendung und Erkennung von Deepfakes, sowie mögliche Abwehrmaßnahmen und Auswirkungen, welche Deepfakes mit sich bringen.
In dieser Forschungsarbeit wird die Datensicherheit von Microsoft Azure analysiert und bewertet. Die Bewertung findet dabei aus der Sicht von Unternehmen statt. Im ersten Abschnitt wird zunächst der grundlegende Aufbau und die unterschiedlichen Formen des Cloud Computing beschrieben. Im zweiten Teil wird ein Vergleich der drei größten Cloud Anbieter vollzogen. Der letzte Teil besteht aus der Evaluation der Datensicherheit von Azure, wobei auf Aspekte wie Datenschutz, Bedrohungen und Schutzmaßnahmen eingegangen wird. Abschließend wird eine Empfehlung für das Unternehmen Bechtle GmbH Offenburg IT-Systemhaus abgegeben.
Im Verlauf der Arbeit stellt sich heraus, dass Azure eine ausreichende Datensicherheit bieten kann. Allerdings wird deutlich, dass durch die Kombination von mehreren Nebenfaktoren wie das Patch-Verhalten oder die Antwortzeit auf Sicherheitsschwachstellen seitens Microsofts, eine große Gefahr für die Daten von Unternehmen entstehen kann. Demnach ist Microsoft als Anbieter ein größeres Problem für die Sicherheit von Daten in Azure als der Cloud-Dienst selbst.
Diese Thesis beschäftigt sich mit den Techniken von Code Injection und API Hooking, die von Malware verwendet werden, um sich in laufende Prozesse einzuschleusen und deren Verhalten zu manipulieren. Darüber hinaus erklärt sie die Grundlagen der Betriebssystemarchitektur, der DLLs, der Win32 API und der PE-Dateien, die für das Verständnis dieser Techniken notwendig sind. Die Thesis stellt verschiedene Methoden von Code Injection und API Hooking vor, wie z.B. DLL Injection, PE Injection, Process Hollowing, Inline Hooking und IAT Hooking, und zeigt anhand von Codebeispielen, wie sie funktionieren. Des Weiteren wird auch beschrieben, wie man Code Injection und API Hooking mithilfe verschiedene Tools und Techniken wie VADs, Speicherforensik und maschinelles Lernen erkennen und verhindern kann. Die Thesis diskutiert außerdem mögliche Gegenmaßnahmen, die das Betriebssystem oder die Anwendungen anwenden können, um sich vor Code Injection und API Hooking zu schützen, wie z.B. ASLR, DEP, ACG, IAF und andere. Zuletzt wird mit einer Zusammenfassung und einem Ausblick auf die zukünftigen Herausforderungen und Möglichkeiten in diesem Bereich abgeschlossen.
Software-defined Access (SD-Access, SDA) hat aufgrund der flexiblen, automatisierten und schnelleren Verwaltung von Unternehmensnetzwerken erhebliche Aufmerksamkeit erlangt. Im Gegensatz zu traditionellen Netzwerken mit manuellen Prozessen, bietet SD-Access Zugriffsrichtlinien, Netzwerksegmentierung und Endpunktüberwachung in einer Lösung und trägt damit zur Netzwerksicherheit in Unternehmen bei.
Zunächst wird die SD-Access-Lösung von Cisco vorgestellt und herausgearbeitet, welche Komponenten dafür benötigt werden. Auf dieser Grundlage wird überprüft, welche Voraussetzungen zur Einführung von SD-Access im konkreten Anwendungsfall, dem SWR, geschaffen werden müssen.
Anschließend wird in einer experimentellen Phase im SWR-eigenen Netzwerklabor eine beispielhafte Architektur mit allen benötigten Komponenten zu Testzwecken konzeptioniert und implementiert. Dabei ist das Design und die Konfiguration möglichst nahe an der realen Umgebung des SWRs orientiert. Mit dem vorliegenden Testsetup werden dann bestimmte Funktionen und Anwendungsszenarien genauer aufgezeigt und die Relevanz für den Sicherheitsgewinn im SWR-LAN untersucht.
Darauf folgt eine abschließende Beurteilung des Sicherheits- und Effizienzgewinns durch die Einführung von SD-Access im SWR-Netzwerk.
This work addresses the conceptualization, design, and implementation of an Application Programming Interface (API) for the Common Security Advisory Framework (CSAF) 2.0, introducing another method for distributing CSAF documents in addition to two already existing methods. These don't allow the use of flexible queries as well as filtering, which makes it difficult for operators of software and hardware to use CSAF. An API is intended to simplify this process and thus advance the automation goal of CSAF.
First, it is evaluated whether the current standard allows the implementation of an API. Any conflicts are highlighted and suggestions for standard adaptations are made. Based on these results, the API is designed to meet the previously defined requirements. Subsequently, a proof of concept is successfully developed according to the design and extensively tested with specially prepared test data. Finally, the results and the necessary standard adjustments are summarized and justified.
The conceptual design and the implementation were successfully completed. However, during the implementation of the proof of concept, some routes could not be fully implemented.
Smart Home Security
(2022)
Interoperabilität zwischen Kommunikationsstandards im Smart Home Umfeld wird durch die steigende Anzahl an Geräten und Herstellern zu einer immer größeren Herausforderung. Nutzer müssen genau darauf achten, dass keine Probleme durch die Nutzung mehrerer Kommunikationsstandards entstehen. Oft sind nur Geräte desselben Herstellers oder einer Gruppe von Herstellern vollständig kompatibel, sodass zwangsweise eine Bindung zu den Herstellern aufgebaut wird. Zusätzlich haben die bereits etablierten Standards zahlreiche bekannte Sicherheitslücken, die bei einer unsauberen Implementierung von Angreifern ausgenutzt werden können.
Der neue Kommunikationsstandard Matter der Connectivity Standards Alliance (CSA) verspricht, diese Probleme zu lösen. Matter basiert auf den bereits existierenden Protokollen WiFi, Bluetooth und Thread und zählt bereits viele der großen Smart Home Hersteller, wie Google, Amazon, Apple, Philips und Signify, zu seinen Partnern. Außerdem soll die Sicherheit Matters für den Endnutzer ein fundamentaler Grundsatz in der Entwicklung sein. Die finale Veröffentlichung des Matter-Standards wird laut der CSA im Herbst 2022 erwartet.
Diese Bachelorthesis hat zum Ziel, Matter anhand des Entwurfs und der bereits öffentlichen Referenzimplementierung auf Schwachstellen im Bereich der Informationssicherheit zu untersuchen. Zur Bewertung der konzeptionellen Sicherheitsmaßnahmen werden unter anderem die Funktionsweise, die Einschätzung der Bedrohungslage, die gewählten Sicherheitsprinzipien für die Entwicklung und die Rolle des Datenschutzes betrachtet.
Im Anschluss werden einerseits bestehende Sicherheitslücken und Schwachstellen in den genutzten Kommunikationsprotokollen betrachtet, aber auch praktische Angriffe gegen Matter werden auf Basis der Betrachtung durchgeführt. Dazu werden sowohl ein Replay Attack als auch ein Deauthentication Attack gegen die Referenzimplementierung
durchgeführt.
Abschließend soll die Frage geklärt werden, ob Matter ein ausreichendes Maß an Sicherheit bieten und für Nutzer einen Vorteil schaffen kann.
Das tiefe Lernen und die daraus entstehenden Technologien bieten eine neue Herausforderung für Unternehmen und privat Personen beiderlei. Deepfakes sind schon seit über vier Jahren im Internet verbreitet und in dieser Zeit wurden hauptsächlich politische Figuren Opfer der Technologie. Diese Arbeit nimmt sich das Ziel, die möglichen Attacken zu beschreiben und Gegenmaßnahmen dafür vorzustellen. Es wird zunächst Social Engineering erläutert und die technischen Grundlagen von Deepfakes gelegt. Daraufhin folgt ein Fallbeispiel, welches genauer aufzeigt, wie auch Unternehmen Opfer von Deepfake Attacken werden können. Diese Attacken fügen einen erheblichen finanziellen sowie Reputationsschaden an. Daher müssen verschiedene technische und organisatorische Maßnahmen gegenüber Deepfakes im Social Engineering Umfeld eingeführt werden. Durch die ständige Entwicklung der Technik werden diese Attacken in der Zukunft an Komplexität und Häufigkeit zunehmen. Unternehmen, Forscher und IT-Sicherheitsspezialisten müssen daher die Entwicklung dieser Attacken beobachten.