Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019)
Refine
Document Type
- Conference Proceeding (59)
- Article (reviewed) (48)
- Bachelor Thesis (12)
- Master's Thesis (11)
- Article (unreviewed) (11)
- Letter to Editor (8)
- Book (6)
- Contribution to a Periodical (5)
- Other (5)
- Patent (5)
Language
- English (121)
- German (54)
- Other language (1)
- Multiple languages (1)
- Russian (1)
Keywords
- Götz von Berlichingen (5)
- Heart rhythm model (5)
- Herzrhythmusmodell (5)
- Machine Learning (5)
- Modeling and simulation (5)
- Regelungstechnik (4)
- Robotik (3)
- 3D computer-aided design (2)
- 3D multi-material polymer printing (2)
- Ablation (2)
Institute
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (178)
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (3)
- Fakultät Medien und Informationswesen (M+I) (2)
- INES - Institut für Energiesystemtechnik (2)
- IaF - Institut für angewandte Forschung (2)
- POIM - Peter Osypka Institut für Medizintechnik (ab 21.10.2020) (2)
- ivESK - Institut für verlässliche Embedded Systems und Kommunikationselektronik (1)
Time-Sensitive Networking (TSN) is the most promising time-deterministic wired communication approach for industrial applications. To extend TSN to "IEEE 802.11" wireless networks two challenging problems must be solved: synchronization and scheduling. This paper is focused on the first one. Even though a few solutions already meet the required synchronization accuracies, they are built on expensive hardware that is not suited for mass market products. While next Wi-Fi generation might support the required functionalities, this paper proposes a novel method that makes possible high-precision wireless synchronization using commercial low-cost components. With the proposed solution, a standard deviation of synchronization error of less than 500 ns can be achieved for many use cases and system loads on both CPU and network. This performance is comparable to modern wired real-time field busses, which makes the developed method a significant contribution for the extension of the TSN protocol to the wireless domain.
With the increasing degree of interconnectivity in industrial factories, security becomes more and more the most important stepping-stone towards wide adoption of the Industrial Internet of Things (IIoT). This paper summarizes the most important aspects of one keynote of DESSERT2020 conference. It highlights the ongoing and open research activities on the different levels, from novel cryptographic algorithms over security protocol integration and testing to security architectures for the full lifetime of devices and systems. It includes an overview of the research activities at the authors' institute.
Analysis of Amplitude and Phase Errors in Digital-Beamforming Radars for Automotive Applications
(2020)
Fundamentally, automotive radar sensors with Digital-Beamforming (DBF) use several transmitter and receiver antennas to measure the direction of the target. However, hardware imperfections, tolerances in the feeding lines of the antennas, coupling effects as well as temperature changes and ageing will cause amplitude and phase errors. These errors can lead to misinterpretation of the data and result in hazardous actions of the autonomous system. First, the impact of amplitude and phase errors on angular estimation is discussed and analyzed by simulations. The results are compared with the measured errors of a real radar sensor. Further, a calibration method is implemented and evaluated by measurements.
Due to the rapidly increasing storage consumption worldwide, as well as the expectation of continuous availability of information, the complexity of administration in today’s data centers is growing permanently. Integrated techniques for monitoring hard disks can increase the reliability of storage systems. However, these techniques often lack intelligent data analysis to perform predictive maintenance. To solve this problem, machine learning algorithms can be used to detect potential failures in advance and prevent them. In this paper, an unsupervised model for predicting hard disk failures based on Isolation Forest is proposed. Consequently, a method is presented that can deal with the highly imbalanced datasets, as the experiment on the Backblaze benchmark dataset demonstrates.
The recent successes and wide spread application of compute intensive machine learning and data analytics methods have been boosting the usage of the Python programming language on HPC systems. While Python provides many advantages for the users, it has not been designed with a focus on multiuser environments or parallel programming - making it quite challenging to maintain stable and secure Python workflows on a HPC system. In this paper, we analyze the key problems induced by the usage of Python on HPC clusters and sketch appropriate workarounds for efficiently maintaining multi-user Python software environments, securing and restricting resources of Python jobs and containing Python processes, while focusing on Deep Learning applications running on GPU clusters.
In this work a method for the estimation of current slopes induced by inverters operating interior permanent magnet synchronous machines is presented. After the derivation of the estimation algorithm, the requirements for a suitable sensor setup in terms of accuracy, dynamic and electromagnetic interference are discussed. The boundary conditions for the estimation algorithm are presented with respect to application within high power traction systems. The estimation algorithm is implemented on a field programmable gateway array. This moving least-square algorithm offers the advantage that it is not dependent on vectors and therefore not every measured value has to be stored. The summation of all measured values leads to a significant reduction of the required storage units and thus decreases the hardware requirements. The algorithm is designed to be calculated within the dead time of the inverter. Appropriate countermeasures for disturbances and hardware restrictions are implemented. The results are discussed afterwards.
Method for controlling a device, in particular, a prosthetic hand or a robotic arm (US20200327705A1)
(2020)
A method for controlling a device, in particular a prosthetic hand or a robotic arm, includes using an operator-mounted camera to detect at least one marker positioned on or in relation to the device. Starting from the detection of the at least one marker, a predefined movement of the operator together with the camera is detected and is used to trigger a corresponding action of the device. The predefined movement of the operator is detected in the form of a line of sight by means of camera tracking. A system for controlling a device, in particular a prosthetic hand or a robotic arm, includes a pair of AR glasses adapted to detect the at least one marker and to detect the predefined movement of the operator.
Purpose
This work presents a new monocular peer-to-peer tracking concept overcoming the distinction between tracking tools and tracked tools for optical navigation systems. A marker model concept based on marker triplets combined with a fast and robust algorithm for assigning image feature points to the corresponding markers of the tracker is introduced. Also included is a new and fast algorithm for pose estimation.
Methods
A peer-to-peer tracker consists of seven markers, which can be tracked by other peers, and one camera which is used to track the position and orientation of other peers. The special marker layout enables a fast and robust algorithm for assigning image feature points to the correct markers. The iterative pose estimation algorithm is based on point-to-line matching with Lagrange–Newton optimization and does not rely on initial guesses. Uniformly distributed quaternions in 4D (the vertices of a hexacosichora) are used as starting points and always provide the global minimum.
Results
Experiments have shown that the marker assignment algorithm robustly assigns image feature points to the correct markers even under challenging conditions. The pose estimation algorithm works fast, robustly and always finds the correct pose of the trackers. Image processing, marker assignment, and pose estimation for two trackers are handled in less than 18 ms on an Intel i7-6700 desktop computer at 3.4 GHz.
Conclusion
The new peer-to-peer tracking concept is a valuable approach to a decentralized navigation system that offers more freedom in the operating room while providing accurate, fast, and robust results.
Als Einstieg in den Diskurs über zivile Netzwerktechnologien, mobile Geräte, Onlinedienste und die Frage, wie sich die „Kirche der Zukunft“ (zumindest aus medienwissenschaftlicher Sicht) positionieren kann, dienen drei Zitate. Die Gegenüberstellung der darin vertretenen Positionen soll den Nutzen und die Folgen der zunehmend vollständigen Durchdringung (fast) aller Lebensbereiche mit Digitaltechnik für den Einzelnen wie für die Gesellschaft aufzeigen.