Fakultät Maschinenbau und Verfahrenstechnik (M+V)
Refine
Year of publication
Document Type
- Article (reviewed) (163)
- Conference Proceeding (140)
- Article (unreviewed) (68)
- Part of a Book (51)
- Contribution to a Periodical (40)
- Bachelor Thesis (25)
- Book (22)
- Patent (16)
- Report (8)
- Other (6)
Keywords
- Dünnschichtchromatographie (26)
- Energieversorgung (12)
- Adsorption (11)
- Ermüdung (9)
- Finite-Elemente-Methode (9)
- Metallorganisches Netzwerk (9)
- Plastizität (8)
- Bauteil (7)
- Haustechnik (7)
- Mikrostruktur (7)
Institute
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (546)
- INES - Institut für Energiesystemtechnik (73)
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (5)
- Zentrale Einrichtungen (4)
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (2)
- ACI - Affective and Cognitive Institute (1)
- Fakultät Medien und Informationswesen (M+I) (1)
- IaF - Institut für angewandte Forschung (1)
- Rektorat/Verwaltung (1)
Gasdynamik
(2019)
Für kompressible Strömungen werden die Erhaltungssätze für Masse, Impuls und Energie hergeleitet. Die Eigenschaften der Stoßgleichungen wie Rankine-Hugoniot-Relation und Rayleigh-Gerade werden betrachtet. Zur Berechnung der Kräfte auf umströmte Körper werden die Auftriebs- und Widerstandsbeiwerte ermittelt. Auf der Basis der Stromfadentheorie wird die Auslegung von Lavaldüsen behandelt. Das physikalische Verhalten linearer Unter- und Überschallströmungen und transsonischer Profilumströmungen wird analysiert.
Experimental Investigation of the Air Exchange Effectiveness of Push-Pull Ventilation Devices
(2020)
The increasing installation numbers of ventilation units in residential buildings are driven by legal objectives to improve their energy efficiency. The dimensioning of a ventilation system for nearly zero energy buildings is usually based on the air flow rate desired by the clients or requested by technical regulations. However, this does not necessarily lead to a system actually able to renew the air volume of the living space effectively. In recent years decentralised systems with an alternating operation mode and fairly good energy efficiencies entered the market and following question was raised: “Does this operation mode allow an efficient air renewal?” This question can be answered experimentally by performing a tracer gas analysis. In the presented study, a total of 15 preliminary tests are carried out in a climatic chamber representing a single room equipped with two push-pull devices. The tests include summer, winter and isothermal supply air conditions since this parameter variation is missing till now for push-pull devices. Further investigations are dedicated to the effect of thermal convection due to human heat dissipation on the room air flow. In dependence on these boundary conditions, the determined air exchange efficiency varies, lagging behind the expected range 0.5 < εa < 1 in almost all cases, indicating insufficient air exchange including short-circuiting. Local air exchange values suggest inhomogeneous air renewal depending on the distance to the indoor apertures as well as the temperature gradients between in- and outdoor. The tested measurement set-up is applicable for field measurements.
In this paper, we describe the PALM model system 6.0. PALM (formerly an abbreviation for Parallelized Large-eddy Simulation Model and now an independent name) is a Fortran-based code and has been applied for studying a variety of atmospheric and oceanic boundary layers for about 20 years. The model is optimized for use on massively parallel computer architectures. This is a follow-up paper to the PALM 4.0 model description in Maronga et al. (2015). During the last years, PALM has been significantly improved and now offers a variety of new components. In particular, much effort was made to enhance the model with components needed for applications in urban environments, like fully interactive land surface and radiation schemes, chemistry, and an indoor model. This paper serves as an overview paper of the PALM 6.0 model system and we describe its current model core. The individual components for urban applications, case studies, validation runs, and issues with suitable input data are presented and discussed in a series of companion papers in this special issue.
Additive manufacturing is a rapidly growing manufacturing process for which many new processes and materials are currently being developed. The biggest advantage is that almost any shape can be produced, while conventional manufacturing methods reach their limits. Furthermore, a lot of material is saved because the part is created in layers and only as much material is used as necessary. In contrast, in the case of machining processes, it is not uncommon for more than half of the material to be removed and disposed of. Recently, new additive manufacturing processes have been on the market that enables the manufacturing of components using the FDM process with fiber reinforcement. This opens up new possibilities for optimizing components in terms of their strength and at the same time increasing sustainability by reducing materials consumption and waste. Within the scope of this work, different types of test specimens are to be designed, manufactured and examined. The test specimens are tensile specimens, which are used both for standardized tensile tests and for examining a practical component from automotive engineering used in student project. This project is a vehicle designed to compete in the Shell Eco-marathon, one of the world’s largest energy efficiency competitions. The aim is to design a vehicle that covers a certain distance with as little fuel as possible. Accordingly, it is desirable to manufacture the components with the lowest possible weight, while still ensuring the required rigidity. To achieve this, the use of fiber-reinforced 3D-printed parts is particularly suitable due to the high rigidity. In particular, the joining technology for connecting conventionally and additively manufactured components is developed. As a result, the economic efficiency was assessed, and guidelines for the design of components and joining elements were created. In addition, it could be shown that the additive manufacturing of the component could be implemented faster and more sustainably than the previous conventional manufacturing.
Ecological concerns on the climatic effects of the emissions from electricity production stipulate the remuneration of electricity grids to accept growing amounts of intermittent regenerative electricity feed-in from wind and solar power. Germany’s eager political target to double regenerative electricity production by 2030 puts pressure on grid operators to adapt and restructure their transmission and distribution grids. The ability of local distribution grids to operate autonomous of transmission grid supply is essential to stabilize electricity supply at the level of German federal states. Although congestion management and collaboration at the distribution system operator (DSO) level are promising approaches, relatively few studies address this issue. This study presents a methodology to assess the electric energy balance for the low-voltage grids in the German federal state of Baden-Württemberg, assuming the typical load curves and the interchange potential among local distribution grids by means of linear programming of the supply function and for typical seasonal electricity demands. The model can make a statement about the performance and development requirements for grid architecture for scenarios in 2035 and 2050 when regenerative energies will—according to present legislation—account for more than half of Germany’s electricity supply. The study details the amendment to Baden-Württemberg’s electricity grid required to fit the system to the requirements of regenerative electricity production. The suggested model for grid analysis can be used in further German regions and internationally to systematically remunerate electricity grids for the acceptance of larger amounts of regenerative electricity inflows. This empirical study closes the research gap of assessing the interchange potential among DSO and considers usual power loads and simultaneously usual electricity inflows.
Short-term load forecasting (STLF) has been playing a key role in the electricity sector for several decades, due to the need for aligning energy generation with the demand and the financial risk connected with forecasting errors. Following the top-down approach, forecasts are calculated for aggregated load profiles, meaning the sum of singular loads from consumers belonging to a balancing group. Due to the emerging flexible loads, there is an increasing relevance for STLF of individual factories. These load profiles are typically more stochastic compared to aggregated ones, which imposes new requirements to forecasting methods and tools with a bottom-up approach. The increasing digitalization in industry with enhanced data availability as well as smart metering are enablers for improved load forecasts. There is a need for STLF tools processing live data with a high temporal resolution in the minute range. Furthermore, behin-the-meter (BTM) data from various sources like submetering and production planning data should be integrated in the models. In this case, STLF is becoming a big data problem so that machine learning (ML) methods are required. The research project “GaIN” investigates the improvement of the STLF quality of an energy utility using BTM data and innovative ML models. This paper describes the project scope, proposes a detailed definition for a benchmark and evaluates the readiness of existing STLF methods to fulfil the described requirements as a reviewing paper.
The review highlights that recent STLF investigations focus on ML methods. Especially hybrid models gain more and more importance. ML can outperform classical methods in terms of automation degree and forecasting accuracy. Nevertheless, the potential for improving forecasting accuracy by the use of ML models depends on the underlying data and the types of input variables. The described methods in the analyzed publications only partially fulfil the tool requirements for STLF on company level. There is still a need to develop suitable ML methods to integrate the expanded data base in order to improve load forecasts on company level.
Interaction and capturing information from the surrounding is dominated by vision and hearing. Haptics on the other side, widens the bandwidth and could also replace senses (sense switching) for impaired. Haptic technologies are often limited to point-wise actuation. Here, we show that actuation in two-dimensional matrices instead creates a richer input. We describe the construction of a full-body garment for haptic communication with a distributed actuating network. The garment is divided into attachable-detachable panels or add-ons that each can carry a two dimensional matrix of actuating haptic elements. Each panel adds to an enhanced sensoric capability of the human- garment system so that together a 720° system is formed. The spatial separation of the panels on different body locations supports semantic and theme-wise separation of conversations conveyed by haptics. It also achieves directional faithfulness, which is maintaining any directional information about a distal stimulus in the haptic input.
Das Projekt „Tilty“ befässt sich mit der Konstruktion eines Speed- Pedelecs. Dieses verfügt über eine Vorderachse mit 2 Rädern und Neigemechanismus. Hinten besitzt es ein Rad. Der Sitz dieses Fahrzeuges sollte ein Fahren in aufrechter Sitzhaltung ermöglichen. Dabei ist der Sitz auf derselben Höhe wie bei einem Auto, um im Straßenverkehr besser wahrgenommen werden zu können als bei einem Liegefahrrad. Ein Ziel dieser Arbeit war es, einen Sitz unter Berücksichtigung der Physiologie eines Menschen zu konstruieren. Die Position der Kurbel war ebenso ein zentrales Thema dieser Arbeit. Dabei spielte der sogenannte runde Tritt eine wichtige Rolle. Beide Komponenten mussten ebenfalls gemeinsam betrachtet werden um eine Aussage treffen zu können. Die Lenkung und damit die Position der Arme sind auch von Bedeutung. Die Konstruktion dieser Lenkung übernimmt eine Masterstudentin, daher ist die Lenkung nur ein Randthema. Eine Aussage über die Position der Arme konnte ebenfalls aufgrund der physiologischen Parameter getroffen werden.
Konstrukteure im Maschinenbau stehen häufig vor der Problemstellung, hochfest vorge-
spannte Schraubenverbindungen und einen durchgehenden Korrosionsschutz zu ver-
einen. Die Normen und Richtlinien bieten hierzu Stand heute keine ausreichenden Ant-
worten. Die Hochschule Offenburg befasst sich im Rahmen einer industriellen Gemein-
schaftsforschung mit der Fragestellung, welchen Einfluss organische Beschichtungen auf
die Vorspannkraft insbesondere bei erhöhten Umgebungstemperaturen haben. In dieser
Arbeit werden die ersten Ergebnisse zum Einfluss der Einzelschichtstärke des Beschich-
tungssystems präsentiert.