RED
Refine
Document Type
- Master's Thesis (12)
Has Fulltext
- yes (12)
Is part of the Bibliography
- no (12)
Keywords
- Wärmepumpe (2)
- Adsorption chiller (1)
- Agrophotovoltaics (1)
- Anomalieerkennung (1)
- Anomaly Detection (1)
- Betriebsoptimierung (1)
- Biochar (1)
- Black-box modeling (1)
- Data Science (1)
- Data analysis (1)
Institute
Open Access
- Closed (8)
- Closed Access (2)
- Diamond (2)
- Open Access (2)
The back contact PV modules with encapsulant free Zebra cells offer a concept where high efficiency cells meet easy to recycle module components. Bifacial Zeb-ra cells of Reference module concept shows exceptional performance due to lack-ing front metallization resulting in a full surface joining the junction thanks to having all the metallization in the rear surface. New Industrial Solar Cell Encapsulation (NICE) module concept removes encapsulant layer and have top and bottom co-vers of the module out of glass providing recyclability as well as simplified manufac-turing process.
For a comparison between both module types, it is important to outline differences, and this brings a workload to analyze nature of Cell to Module (CTM) losses in them. Also, simulation methods to validate experiments for 2 Zebra half-cell NICE and Reference modules are investigated and 120- half cells modules are simulated after the validation to have a grasp on power losses. As a part of optimization, structural changes considering series resistances are offered within the experi-ments and some further possible improvements are investigated through the simu-lations. In this manner, this thesis questions the potential of adding more copper to both unit NICE module and 120 half-cell modules and investigates the series re-sistances due to interconnection materials and offers improvement in the CTM power losses for both modules.
This thesis explores the feasibility and optimization of a solar-thermal sorption system mainly designed to provide cooling but also capable of heating functionalities. Through the development of a black-box model using Python programming, the study delves into the system's performance under various operation modes. Simulation results reveal the effectiveness of adaptive control strategies and pre-heating stages in optimizing efficiency, particularly in cooling modes. In heating assessments, superior performance is observed when utilizing the outdoor coil as the heat source for the heat pump. Challenges related to operational temperature bands are addressed, proposing parallel connections of the heat pump and outdoor coil to enhance performance. Future research directions include refining regression models and incorporating real-time measurement data for improved accuracy, as well as extending simulation duration for comprehensive evaluations. This study contributes valuable insights into the system’s capabilities and applications, laying the groundwork for advancements in heat-driven integrated sustainable energy systems.
Increasing global energy demand and the need to transition to sustainable energy sources to mitigate climate change, highlights the need for innovative approaches to improve the resilience and sustainability of power grids. This study focuses on addressing these challenges in the context of Morocco's evolving energy landscape, where increasing energy demand and efforts to integrate renewable energy require grid reinforcement strategies. Using renewable energy sources such as photovoltaic systems and energy storage technologies, this study aims to develop a methodology for strengthening rural community grids in Morocco.
Traditional reinforcement measures such as line and transformer upgrades will be investigated as well as the integration of power generation from photovoltaic systems, which offer a promising way to utilise Morocco's abundant solar resources. In addition, energy storage systems will be analysed as potential solutions to the challenges of grid stability and resilience. Using comprehensive data analysis, scenario planning and simulation methods with the open-source simulation software Panda Power, this study aims to assess the impact of different grid reinforcement measures, including conventional methods, photovoltaic integration, and the use of energy storage, on grid performance and sustainability. The results of this study provide valuable insights into the challenges and opportunities of transitioning to a more resilient and sustainable energy future in Morocco.
Based on a rural medium-voltage grid in Souihla, Morocco, three scenarios were carried out to assess the impact of demand growth in 2030 and 2040. The first scenario focuses on conventional grid reinforcement measures, while the second scenario incorporates energy from residential photovoltaic systems. The third scenario analyses the integration of storage systems and their impact on grid reinforcement in 2030.
The simulations with energy from photovoltaic systems show a reduction in grid reinforcement measures compared to the scenario without solar energy. In addition, the introduction of a storage system in 2030 led to a significant reduction in the required installed transformer capacity and fewer congested lines. Furthermore, the results emphasized the role of storage in stabilizing grid voltage levels.
In summary, the results highlighted the potential benefits of integrating energy from photovoltaics and storage into the grid. This integration not only reduces the need for transformers and overall grid infrastructure but also promotes a more efficient and sustainable energy system.
Decarbonisation Strategies in Energy Systems Modelling: APV and e-tractors as Flexibility Assets
(2023)
This work presents an analysis of the impact of introducing Agrophotovoltaic technologies and electric tractors into Germany’s energy system. Agrophotovoltaics involves installing photovoltaic systems in agricultural areas, allowing for dual usage of the land for both energy generation and food production. Electric tractors, which are agricultural machinery powered by electric motors, can also function as energy storage units, providing flexibility to the grid. The analysis includes a sensitivity study to understand how the availability of agricultural land influences Agrophotovoltaic investments, followed by the examination of various scenarios that involve converting diesel tractors to electric tractors. These scenarios are based on the current CO2 emission reduction targets set by the German Government, aiming for a 65% reduction below 1990 levels by 2030 and achieving zero emissions by 2045. The results indicate that approximately 3% of available agricultural land is necessary to establish a viable energy mix in Germany. Furthermore, the expansion of electric tractors tends to reduce the overall system costs and enhances the energy-cost-efficiency of Agrophotovoltaic investments.
In recent years, the demand for reliable power, driven by sensitive electronic equipment, has surged. Even minor deviations from the nominal supply can lead to malfunctions or failure. Despite technological advancements, power quality issues persist due to various factors like short circuits, overloads, voltage fluctuations, unbalanced loads, and non-linear loads.
This thesis extensively explores power quality anomalies in industrial and commercial sectors, using power system data as the primary analytical resource. It addresses the critical need for power supply reliability in today's evolving power grid industry, affected by non-linear loads, renewable energy integration, and electric vehicles. This field of study is paramount for ensuring power supply reliability and stability in the evolving power grid industry.
The core of this thesis involves a comprehensive investigation of power quality, with a focus on frequency, power, and harmonics in voltage and current signals. The research employs Python programming for advanced data analysis, utilizing techniques such as advanced Fast Fourier Transformation (FFT) analysis. The primary objective is to provide valuable insights aimed at elevating power supply quality and enhancing reliability in both industrial and commercial environments.
Estimation and projecting total steel industry production costs from 2019 to 2030 for Germany
(2023)
This thesis analyses the total production cost of the German steel industry from 2019 to 2022, as well as a projection of the German steel industry's total production cost until 2030. The research separates the costs of steel production into their primary components, such as raw materials, energy, CO2 cost, capital expenses and operating expenses. The cost of steel production is determined separately for primary steelmaking with the blast furnace and basic oxygen furnace (BF-BOF) and secondary steelmaking with the electric arc furnace (EAF).
The analysis indicates that, following the COVID-19 disaster and the fuel crisis, the overall cost of producing steel in Germany has progressively risen over the previous few years, reaching its peak in the first half of 2022. In addition, there are considerable disparities between the production costs of primary and secondary steelmaking processes, with primary steelmaking generally being more expensive.
In this analysis, the total cost of production for the German steel industry in the year 2030 has been estimated by taking into account historical trends as well as other predictions that are currently available.
This thesis provides overall insights on the economics of the German steel sector. By giving thorough information on production costs and changes over time, this research can assist guide crucial future investment decisions in this essential industry. To ensure long-term success, our findings emphasize the significance of investing in more sustainable and ecologically friendly steel production processes.
Ziel der vorliegenden Arbeit ist das netzdienliche Betreiben einer Wärmepumpe. Um diese Netzdienlichkeit zu erreichen, wird ein modellprädiktiver Regler entwickelt und implementiert, dessen Ziel es ist die Stromkosten einer Wärmepumpe zu senken. Dazu werden die Variablen Stromkosten und ein simulierter Heizbetrieb betrachtet.
Die Entwicklung eines modellprädiktiven Reglers setzt zunächst eine Modellierung der Komponenten des Heizsystems voraus. Ebenfalls muss eine Kostenfunktion formuliert werden, die es zu minimieren gilt. In einem Optimierungsproblem werden die Modelle als Randbedingungen und die Kostenfunktion als Zielfunktion der Optimierung formuliert. Dazu müssen gewisse Vereinfachungen getroffen werden, um das Optimierungsproblem zuverlässig und ohne enormen Rechenaufwand in einer Regelungsschleife lösen zu können.
Nun wird das Optimierungsproblem mit externen Modulen verknüpft, die eine Kommunikation mit der realen Wärmepumpen, Strompreisprognosen und Wettervorhersagen ermöglichen. Der dabei entwickelte Algorithmus wird auf einem Raspberry Pi Einplatinencomputer gespeichert und dort in einem regelmäßigen Zeitintervall von 15 Minuten ausgeführt, um den Betrieb der Wärmepumpe zu regeln.
Schließlich wird der modellprädiktive Regler in Betrieb genommen. Anschließend kann der modellprädiktive Betrieb mit dem konventionellen Betrieb verglichen werden. Aus dem Vergleich wird deutlich, dass eine modellprädiktive Regelung tatsächlich die Netzdienlichkeit einer Wärmepumpe verbessern kann. Andererseits werden auch die Entwicklungspotentiale identifiziert.
The current thesis conducts the study on the integration of digitalization techniques aimed at improving energy supply efficiency in off-grid energy systems. The primary objective is to fortify the security of energy supply in remote areas, particularly in instances of adverse weather conditions, unanticipated changes in load and fluctuations in the performance of renewable energy systems. This objective is to be achieved through the implementation of a smart load management strategy in stand-alone photovoltaic systems (SAPVS). This strategy involves deployment of forecasting algorithms on an edge device that operates with limited processing resources in an environment characterized for the lack of internet connection. The edge device is designed to interact with a smart home gateway that prioritizes, and schedules smart appliances based on the forecasted state of charge (SOC) in the 36-hours ahead of the SAPVS operation (the implementation of the loads schedule deployed on the Home Assistant device is out of the scope of the tasks implemented for this project).
The edge device, developed using a Raspberry Pi 3B+, was specifically intended for being implemented along with a SAPVS, in remote areas such as health stations in Africa and tropical islands, providing communities with a reliable source of electrical energy. The deployment of the strategy was carried out in four phases. The first phase involved the implementation of an Extraction-Transformation-Load (ETL) pipeline, where data was gathered from various heterogeneous hardware sources of an implemented test system that served as the enabler and testbench of this research, this test stand is composed of power electronics components such as an inverter, a MPPT solar charge controller, a smart meter, and a BOS LiFePo4 battery prototype. In the transformation stage, a data model was developed to identify the most critical parameters of the energy system, and to eliminate outliers and null values. In the load stage, a local SQL database was established for saving and structuring the data gathered and to ensure high-quality data with defined units and casting.
The second phase involved data analysis to identify the relevant features and potential exogenous variables for the forecasting model to implement. In the third phase, an Auto Regressive Moving Average (ARMA) model with two selected exogenous variables was implemented to forecast the AC load consumption profile for the 36- hours ahead of the off-grid system operation. The final phase involved the information exchange with the Home Assistant device, by transferring to it from the edge device the battery SOC present value and the predicted 36-hour ahead AC load profile information for prioritization and scheduling of loads; this through an MQTT interface.
The outcome of the experiment was a successful deployment of a data engineering and data forecasting approach that enabled data quality strategy implementation, local database storage, and forecasting algorithms on a processing and internet-constrained edge device. The interface with a home assistant implementation resulted in the successful execution of smart load management endeavors in an off-grid system, thereby enhancing the energy security of supply and contributing to the advancement of data-driven strategies in the rural electrification sector.
This thesis emphasizes the significance of digitalization strategies in smart SAPVS and highlights the potential of edge computing solutions in achieving seamless energy management in smart homes.
Ziel dieser Arbeit ist die Modellierung und Nutzung eines digitalen Zwillings am Beispiel eines realen Tiny-Houses. Dazu werden für die Komponenten der technischen Gebäudeausrüstung Wärmepumpe, thermische Speicher, thermoaktives Bauteilsystem, PVT-Kollektoren und Batterie als Grey-Box-Modelle modelliert und in der Python-Umgebung umgesetzt. In dieser Arbeit wird auf die physikalischen Hintergründe und mathematischen Formulierungen für jede Komponente eingegangen.
In einem automatisierten Programm werden die digitalen Komponenten mit Messwerten aus dem realen Anlagenbetrieb verknüpft. Dieses Skript wird zu Fehlererkennung verwendet. Dabei konnte ein fehlerhafter Betrieb der PVT-Kollektoren bewiesen werden.
Die Verknüpfung der einzelnen Komponenten zum digitalen Zwilling wird zur Betriebsoptimierung verwendet. Hierzu wird die Simulation des Ausgangszustands mit verschiedenen Optimierungsstrategien verglichen. Dabei konnte der Anlagenbetrieb hinsichtlich Komfortbedingungen und Energieeffizienz deutlich optimiert werden. Die finale Optimierungsstrategie basiert auf einereinfachen Wettervorhersage.
Mit der Modellierung und Nutzung eines digitalen Zwillings trägt diese Arbeit dazu bei, innovative Lösungen für die zukünftige Entwicklung und Gestaltung von Gebäuden sowie die Optimierung bereits bestehender Gebäude mithilfe digitaler Zwillinge voranzutreiben.
The effects of climate change, including severe storms, heat waves, and melting glaciers, are highlighted as an urgent concern, emphasising the need to decrease carbon emissions to restrict global warming to 1.5°C. To accomplish this goal, it is vital to substitute fossil fuel-based power plants with renewable energy sources like solar, wind, hydro, and biofuels. Despite some progress being made, the proportion of renewables used in generating electricity is still lower than the levels needed for 2030 and 2050. Decarbonising the power grid is also critical in lowering the energy consumption of buildings, which is responsible for a substantial percentage of worldwide electricity usage. Even though there has been substantial expansion in the worldwide renewable energy market in the past 15 years, the transition to renewable energy sources also requires taking into account the importance of energy trading.
Peer-to-peer (P2P) electricity trading is an emerging type of energy exchange that can revolutionise the energy sector by providing a more decentralised and efficient way of trading energy. This research deals about P2P electricity trading in a carbon-neutral scenario. 'Python for Power System Analysis' (PyPSA) was used to develop models through which the P2P effect was tested. Data for the entire state of Baden-Württemberg (BW) was collected. Three scenarios were taken into consideration while developing models: 2019 (base), 2030 (coal phase-out), and 2040(climate neutral). Alongside this, another model with no P2P trading was developed to make a comparison. In addition, the use case of community storage in a P2P trading network is also presented.
The research concludes that P2P has a significant positive effect on a pathway to achieve climate neutrality. The findings show that the share of renewables in electricity generation is increasing compared to conventional sources in BW, which can be traded to meet the demand. From the storage analysis, it can be concluded that community storage can be effectively utilised in P2P trading. While the emissions are reduced, the operating costs are also reduced when the grid has P2P trading available. By highlighting the benefits of P2P trading, this research contributed to the growing body of research on the effectiveness of P2P trading in an electricity network grid.