Refine
Document Type
Conference Type
- Konferenzartikel (2)
Is part of the Bibliography
- yes (7)
Keywords
- Electrical Engineering (1)
- Electronic Engineering (1)
- Energie (1)
- Energietechnik (1)
- Energieversorgung (1)
- General Energy (1)
- Kälteanlagen (1)
- Simulation (1)
- Solarenergie (1)
Institute
Open Access
- Closed Access (3)
- Open Access (3)
- Closed (1)
This work presents the results of experimental operation of a solar-driven climate system using mixed-integer nonlinear model predictive control (MPC). The system is installed in a university building and consists of two solar thermal collector fields, an adsorption cooling machine with different operation modes, a stratified hot water storage with multiple inlets and outlets as well as a cold water storage. The system and the applied modeling approach is described and a parallelized algorithm for mixed-integer nonlinear MPC and a corresponding implementation for the system are presented. Finally, we show and discuss the results of experimental operation of the system and highlight the advantages of the mixed-integer nonlinear MPC application.
A coordinated operation of decentralised micro-scale hybrid energy systems within a locally managed network such as a district or neighbourhood will play a significant role in the sector-coupled energy grid of the future. A quantitative analysis of the effects of the primary energy factors, energy conversion efficiencies, load profiles, and control strategies on their energy-economic balance can aid in identifying important trends concerning their deployment within such a network. In this contribution, an analysis of the operational data from five energy laboratories in the trinational Upper-Rhine region is evaluated and a comparison to a conventional reference system is presented. Ten exemplary data-sets representing typical operation conditions for the laboratories in different seasons and the latest information on their national energy strategies are used to evaluate the primary energy consumption, CO2 emissions, and demand-related costs. Various conclusions on the ecologic and economic feasibility of hybrid building energy systems are drawn to provide a toe-hold to the engineering community in their planning and development.
Optimisation based economic despatch of real-world complex energy systems demands reduced order and continuously differentiable component models that can represent their part-load behaviour and dynamic responses. A literature study of existing modelling methods and the necessary characteristics the models should meet for their successful application in model predictive control of a polygeneration system are presented. Deriving from that, a rational modelling procedure using engineering principles and assumptions to develop simplified component models is applied. The models are quantitatively and qualitatively evaluated against experimental data and their efficacy for application in a building automation and control architecture is established.
Within this work, the benefits of using predictive control methods for the operation of Adsorption Cooling Machines (ACMs) are shown on a simulation study. Since the internal control decisions of series-manufactured ACMs often cannot be influenced, the work focuses on optimized scheduling of an ACM considering its internal functioning as well as forecasts for load and driving energy occurrence. For illustration, an assumed solar thermal climate system is introduced and a system model suitable for use within gradient-based optimization methods is developed. The results of a system simulation using a conventional scheme for ACM scheduling are compared to the results of a predictive, optimization-based scheduling approach for the same exemplary scenario of load and driving energy occurrence. The benefits of the latter approach are shown and future actions for application of these methods for system control are addressed.
Drawing off the technical flexibility of building polygeneration systems to support a rapidly expanding renewable electricity grid requires the application of advanced controllers like model predictive control (MPC) that can handle multiple inputs and outputs, uncertainties in forecast data, and plant constraints amongst other features. In this original work, an economic-MPC-based optimal scheduling of a real-world building energy system is demonstrated and its performance is evaluated against a conventional controller. The demonstration includes the steps to integrate an optimisation-based supervisory controller into a standard building automation and control system with off-the-shelf HVAC components and usage of state-of-art algorithms for solving complex nonlinear mixed integer optimal control problems. With the MPC, quantitative benefits in terms of 6–12% demand-cost savings and qualitative benefits in terms of better controller adaptability and hardware-friendly operation are identified. Further research potential for improving the MPC framework in terms of field-level stability, minimising constraint violations, and inter-system communication for its deployment in a prosumer-network is also identified.
Die fluktuierende Verfügbarkeit regenerativer Energiequellen stellt eine Herausforderung bei der Planung und Auslegung regenerativer Gebäudeenergiesysteme dar. Die in einem System benötigten Speicherkapazitäten hängen dabei sowohl von der eingesetzten Regelungsstrategie als auch von den temperaturabhängigen Wirkungsgraden der Anlagenkomponenten ab. Genauere Einblicke in das Betriebsverhalten eines Gesamtsystems können dynamische Simulationen liefern, die eine Analyse der Systemtemperaturen und von Teilenergiekennwerten ermöglichen.
Am 1. Juli 2022 trafen sich im Rahmen des Abschlusskolloquiums des Projekts ACA-Modes rund 60 Teilnehmende aus Forschung, Lehre und Industrie zu einer internationalen Konferenz an der Hochschule Offenburg. Hier wurden die Projektergebnisse rund um die erfolgreiche Implementierung modellprädiktiver Regelstrategien vorgestellt, aktuelle Fragestellungen diskutiert und Entwicklungspfade hin zu einem netzdienlichen Betrieb von Energieverbundsystemen skizziert.