Refine
Document Type
- Conference Proceeding (17)
- Article (reviewed) (1)
- Part of a Book (1)
- Contribution to a Periodical (1)
- Report (1)
Conference Type
- Konferenzartikel (17)
Is part of the Bibliography
- yes (21)
Keywords
- Eingebettetes System (5)
- Netzwerk (3)
- 6LoWPAN (1)
- Automotive engineering (1)
- Design (1)
- Embedded Software (1)
- Gebäudeleittechnik (1)
- Implementation (1)
- Industrie 4.0 (1)
- Intelligentes Stromnetz (1)
Institute
Open Access
- Closed Access (13)
- Open Access (5)
- Bronze (1)
- Closed (1)
Die Vielfalt der Protokolle, die praktisch auf allen Ebenen der Netzwerkkommunikation zu berücksichtigen ist, stellt eine der großen Herausforderungen bei der fortschreitenden Automatisierung des intelligenten Hauses dar. Unter dem Überbegriff Internet der Dinge (Internet of Things) entstehen gegenwärtig zahlreiche neue Entwicklungen, Standards, Allianzen und so genannte Ökosysteme. Diese haben die Absicht einer horizontalen Integration gewerkeübergreifender Anwendungen und verfolgen fast alle das Ziel, die Situation zu vereinfachen, die Entwicklungen zu beschleunigen und Markterfolge zu erreichen. Leider macht diese Vielfalt momentan die Welt aber eher noch komplexer und bringt damit das Risiko mit sich, genau das Gegenteil der ursprünglichen Absichten zu erreichen. Dieser Beitrag versucht, die Entwicklungen möglichst systematisch zu kategorisieren und mögliche Lösungsansätze zu beschreiben.
The Bluetooth community is in the process to develop mesh technology. This is highly promising as Bluetooth is widely available in Smart Phones and Tablet PCs, allowing an easy access to the Internet of Things. In this paper work, we investigate the performance of Bluetooth enabled mesh networking that we performed to identify the strengths and weaknesses. A demonstrator for this protocol has been implemented by using the Fruity Mesh protocol implementation. Extensive test cases have been executed to measure the performance, the reliability, the power consumption and the delay. For this, an Automated Physical Testbed (APTB), which emulates the physical channels has been used. The results of these measurements are considered useful for the real implementation of Bluetooth; not only for home and building automation, but also for industrial automation.
6LoWPAN (IPv6 over Low Power Wireless Personal Area Networks) is gaining more and more attraction for the seamless connectivity of embedded devices for the Internet of Things. It can be observed that most of the available solutions are following an open source approach, which significantly leads to a fast development of technologies and of markets. Although the currently available implementations are in a pretty good shape, all of them come with some significant drawbacks. It was therefore decided to start the development of an own implementation, which takes the advantages from the existing solutions, but tries to avoid the drawbacks. This paper discussed the reasoning behind this decision, describes the implementation and its characteristics, as well as the testing results. The given implementation is available as open-source project under [15].
Institute of Reliable Embedded Systems and Communication Electronics, Offenburg University of Applied Sciences, Germany has developed an automated testing environment, Automated Physical TestBeds (APTB), for analyzing the performance of wireless systems and its supporting protocols. Wireless physical networking nodes can connect to this APTB and the antenna output of this attaches with the RF waveguides. To model the RF environment this RF waveguides then establish wired connection among RF elements like splitters, attenuators and switches. In such kind of set up it’s well possible to vary the path characteristics by altering the attenuators and switches. The major advantage of using APTB is the possibility of isolated, well controlled, repeatable test environment in various conditions to run statistical analysis and even to execute regression tests. This paper provides an overview of the design and implementation of APTB, demonstrates its ability to automate test cases, and its efficiency.
IPv6 over resource-constrained devices (6Lo) emerged as a de-facto standard for the Internet of Things (IoT) applications especially in home and building automation systems. We provide results of an investigation of the applicability of 6LoWPAN with RPL mesh networks for home and building automation use cases. The proper selection of Trickle parameters and neighbor reachable time-outs is important in the RPL protocol suite to respond efficiently to any path failure. These parameters were analyzed in the context of energy consumption w.r.t the number of control packets. The measurements were performed in an Automated Physical Testbeds (APTB). The results match the recommendation by RFC 7733 for selecting various parameters of RPL protocol suite. This paper shows the relationship between various RPL parameters and control traffic overhead during network rebuild. Comparative measurement results with Bluetooth Low Energy (BLE) in this work showed that 6Lo with RPL outperformed BLE in this use case with less control traffic overheads.
Wireless communication systems more and more become part of our daily live. Especially with the Internet of Things (IoT) the overall connectivity increases rapidly since everyday objects become part of the global network. For this purpose several new wireless protocols have arisen, whereas 6LoWPAN (IPv6 over Low power Wireless Personal Area Networks) can be seen as one of the most important protocols within this sector. Originally designed on top of the IEEE802.15.4 standard it is a subject to various adaptions that will allow to use 6LoWPAN over different technologies; e.g. DECT Ultra Low Energy (ULE). Although this high connectivity offers a lot of new possibilities, there are several requirements and pitfalls coming along with such new systems. With an increasing number of connected devices the interoperability between different providers is one of the biggest challenges, which makes it necessary to verify the functionality and stability of the devices and the network. Therefore testing becomes one of the key components that decides on success or failure of such a system. Although there are several protocol implementations commonly available; e.g., for IoT based systems, there is still a lack of according tools and environments as well as for functional and conformance testing. This article describes the architecture and functioning of the proposed test framework based on Testing and Test Control Notation Version 3 (TTCN-3) for 6LoWPAN over ULE networks.