Refine
Year of publication
Document Type
- Conference Proceeding (176)
- Article (reviewed) (30)
- Article (unreviewed) (19)
- Part of a Book (11)
- Book (5)
- Patent (3)
- Master's Thesis (2)
- Report (2)
- Contribution to a Periodical (1)
Conference Type
- Konferenzartikel (174)
- Konferenz-Abstract (1)
- Sonstiges (1)
Keywords
- Kommunikation (11)
- Eingebettetes System (8)
- Blockchain (6)
- Security (5)
- Sicherheit (5)
- Drahtloses lokales Netz (4)
- Intelligentes Stromnetz (4)
- Internet of Things (4)
- blockchain (4)
- Energieversorgung (3)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (158)
- ivESK - Institut für verlässliche Embedded Systems und Kommunikationselektronik (135)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (86)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (3)
- Fakultät Medien (M) (ab 22.04.2021) (1)
- Zentrale Einrichtungen (1)
Open Access
- Closed Access (94)
- Closed (71)
- Open Access (64)
- Bronze (16)
- Gold (10)
- Diamond (4)
Time-Sensitive Networking (TSN) is the most promising time-deterministic wired communication approach for industrial applications. To extend TSN to "IEEE 802.11" wireless networks two challenging problems must be solved: synchronization and scheduling. This paper is focused on the first one. Even though a few solutions already meet the required synchronization accuracies, they are built on expensive hardware that is not suited for mass market products. While next Wi-Fi generation might support the required functionalities, this paper proposes a novel method that makes possible high-precision wireless synchronization using commercial low-cost components. With the proposed solution, a standard deviation of synchronization error of less than 500 ns can be achieved for many use cases and system loads on both CPU and network. This performance is comparable to modern wired real-time field busses, which makes the developed method a significant contribution for the extension of the TSN protocol to the wireless domain.
This paper presents a novel low-jitter interface between a low-cost integrated IEEE802.11 chip and a FPGA. It is designed to be part of system hardware for ultra-precise synchronization between wireless stations. On physical level, it uses Wi-Fi chip coexistence signal lines and UART frame encoding. On its basis, we propose an efficient communication protocol providing precise timestamping of incoming frames and internal diagnostic mechanisms for detecting communication faults. Meanwhile it is simple enough to be implemented both in low-cost FPGA and commodity IEEE802.11 chip firmware. The results of computer simulation shows that developed FPGA implementation of the proposed protocol can precisely timestamp incoming frames as well as detect most of communication errors even in conditions of high interference. The probability of undetected errors was investigated. The results of this analysis are significant for the development of novel wireless synchronization hardware.
Hybrid low-voltage physical unclonable function based on inkjet-printed metal-oxide transistors
(2020)
Modern society is striving for digital connectivity that demands information security. As an emerging technology, printed electronics is a key enabler for novel device types with free form factors, customizability, and the potential for large-area fabrication while being seamlessly integrated into our everyday environment. At present, information security is mainly based on software algorithms that use pseudo random numbers. In this regard, hardware-intrinsic security primitives, such as physical unclonable functions, are very promising to provide inherent security features comparable to biometrical data. Device-specific, random intrinsic variations are exploited to generate unique secure identifiers. Here, we introduce a hybrid physical unclonable function, combining silicon and printed electronics technologies, based on metal oxide thin film devices. Our system exploits the inherent randomness of printed materials due to surface roughness, film morphology and the resulting electrical characteristics. The security primitive provides high intrinsic variation, is non-volatile, scalable and exhibits nearly ideal uniqueness.
The development of Internet of Things (IoT) embedded devices is proliferating, especially in the smart home automation system. However, the devices unfortunately are imposing overhead on the IoT network. Thus, the Internet Engineering Task Force (IETF) have introduced the IPv6 Low-Power Wireless Personal Area Network (6LoWPAN) to provide a solution to this constraint. 6LoWPAN is an Internet Protocol (IP) based communication where it allows each device to connect to the Internet directly. As a result, the power consumption is reduced. However, the limitation of data transmission frame size of the IPv6 Routing Protocol for Low-power and Lossy Network’s (RPL’s) had made it to be the running overhead, and thus consequently degrades the performance of the network in terms of Quality of Service (QoS), especially in a large network. Therefore, HRPL was developed to enhance the RPL protocol to minimize redundant retransmission that causes the routing overhead. We introduced the T-Cut Off Delay to set the limit of the delay and the H field to respond to actions taken within the T-Cut Off Delay. Thus, this paper presents the comparison performance assessment of HRPL between simulation and real-world scenarios (6LoWPAN Smart Home System (6LoSH) testbed) in validating the HRPL functionalities. Our results show that HRPL had successfully reduced the routing overhead when implemented in 6LoSH. The observed Control Traffic Overhead (CTO) packet difference between each experiment is 7.1%, and the convergence time is 9.3%. Further research is recommended to be conducted for these metrics: latency, Packet Delivery Ratio (PDR), and throughput.
The authentication method of electronic devices, based on individual forms of correlograms of their internal electric noises, is well-known. Specific physical differences in the components – for example, caused by variations in production quality – cause specific electrical signals, i.e. electric noise, in the electronic device. It is possible to obtain this information and to identify the specific differences of the individual devices using an embedded analog-to-digital converter (ADC). These investigations confirm the possibility to identify and authenticate electronic devices using bit templates, calculated from the sequence of values of the normalized autocorrelation function of noise. Experiments have been performed using personal computers. The probability of correct identification and authentication increases with increasing noise recording duration. As a result of these experiments, an accuracy of 98.1% was achieved for a 1 second-long registration of EM for a set of investigated computers.
Time Sensitive Networking (TSN) provides mechanisms to enable deterministic and real-time networking in industrial networks. Configuration of these mechanisms is key to fully deploy and integrate TSN in the networks. The IEEE 802.1 Qcc standard has proposed different configuration models to implement a TSN configuration. Up until now, TSN and its configuration have been explored mostly for Ethernet-based industrial networks. However, they are still considered “work-in-progress” for wireless networks. This work focuses on the fully centralized model and describes a generic concept to enable the configuration of TSN mechanisms in wireless industrial networks. To this end, a configuration entity is implemented to conFigure the wireless end stations to satisfy their requirements. The proposed solution is then validated with the Digital Enhanced Cordless Telecommunication ultra-low energy (DECT ULE) wireless communication protocol.
With the increasing degree of interconnectivity in industrial factories, security becomes more and more the most important stepping-stone towards wide adoption of the Industrial Internet of Things (IIoT). This paper summarizes the most important aspects of one keynote of DESSERT2020 conference. It highlights the ongoing and open research activities on the different levels, from novel cryptographic algorithms over security protocol integration and testing to security architectures for the full lifetime of devices and systems. It includes an overview of the research activities at the authors' institute.
RETIS – Real-Time Sensitive Wireless Communication Solution for Industrial Control Applications
(2020)
Ultra-Reliable Low Latency Communications (URLLC) has been always a vital component of many industrial applications. The paper proposes a new wireless URLLC solution called RETIS, which is suitable for factory automation and fast process control applications, where low latency, low jitter, and high data exchange rates are mandatory. In the paper, we describe the communication protocol as well as the hardware structure of the network nodes for implementing the required functionality. Many techniques enabling fast, reliable wireless transmissions are used – short Transmission Time Interval (TTI), Time-Division Multiple Access (TDMA), MIMO, optional duplicated data transfer, Forward Error Correction (FEC), ACK mechanism. Preliminary tests show that reliable end-to-end latency down to 350 μs and packet exchange rate up to 4 kHz can be reached (using quadruple MIMO and standard IEEE 802.15.4 PHY at 250 kbit/s).
TSN, or Time Sensitive Networking, is becoming an essential technology for integrated networks, enabling deterministic and best effort traffic to coexist on the same infrastructure. In order to properly configure, run and secure such TSN, monitoring functionality is a must. The TSN standard already has some preparations to provide such functionality and there are different methods to choose from. We implemented different methods to measure the time synchronisation accuracy between devices as a C library and compared the measurement results. Furthermore, the library has been integrated into the ControlTSN engineering framework.
Novel manufacturing technologies, such as printed electronics, may enable future applications for the Internet of Everything like large-area sensor devices, disposable security, and identification tags. Printed physically unclonable functions (PUFs) are promising candidates to be embedded as hardware security keys into lightweight identification devices. We investigate hybrid PUFs based on a printed PUF core. The statistics on the intra- and inter-hamming distance distributions indicate a performance suitable for identification purposes. Our evaluations are based on statistical simulations of the PUF core circuit and the thereof generated challenge-response pairs. The analysis shows that hardware-intrinsic security features can be realized with printed lightweight devices.
During the day-to-day exploitation of localization systems in mines, the technical staff tends to incorrectly rearrange radio equipment: positions of devices may not be accurately marked on a map or their positions may not correspond to the truth. This situation may lead to positioning inaccuracies and errors in the operation of the localization system.This paper presents two Bayesian algorithms for the automatic corrections of positions of the equipment on the map using trajectories restored by the inertial measurement units mounted to mobile objects, like pedestrians and vehicles. As a basis, a predefined map of the mine represented as undirected weighted graph was used as input. The algorithms were implemented using the Simultaneous Localization and Mapping (SLAM) approach.The results prove that both methods are capable to detect misplacement of access points and to provide corresponding corrections. The discrete Bayesian filter outperforms the unscented Kalman filter, which, however, requires more computational power.
Wireless sensor networks have found their way into a wide range of applications, among which environmental monitoring systems have attracted increasing interests of researchers. Main challenges for these applications are scalability of the network size and energy efficiency of the spatially distributed nodes. Nodes are mostly battery-powered and spend most of their energy budget on the radio transceiver module. In normal operation modes most energy is spent waiting for incoming frames. A so-called Wake-On-Radio (WOR) technology helps to optimize trade-offs between energy consumption, communication range, complexity of the implementation and response time. We already proposed a new protocol called SmartMAC that makes use of such WOR technology. Furthermore, it gives the possibility to balance the energy consumption between sender and receiver nodes depending on the use case. Based on several calculations and simulations, it was predicted that the SmartMAC protocol was significantly more efficient than other schemes being proposed in recent publications, while preserving a certain backward compatibility with standard IEEE802.15.4 transceivers. To verify this prediction, we implemented the SmartMAC protocol for a given hardware platform. This paper compares the realtime performance of the SmartMAC protocol against simulation results, and proves the measured values are very close to the estimated values. Thus we believe that the proposed MAC algorithms outperforms all other Wake-on-Radio MACs.
When designing and installing Indoor Positioning Systems, several interrelated tasks have to be solved to find an optimum placement of the Access Points. For this purpose, a mathematical model for a predefined number of access points indoors is presented. Two iterative algorithms for the minimization of localization error of a mobile object are described. Both algorithms use local search technique and signal level probabilities. Previously registered signal strengths maps were used in computer simulation.
Narrowband IoT (NB-IoT) as a radio access technology for the cellular Internet of Things (cIoT) is getting more traction due to attractive system parameters, new proposals in the 3 rd Generation Partnership Project (3GPP) Release 14 for reduced power consumption and ongoing world-wide deployment. As per 3GPP, the low-power and wide-area use cases in 5G specification will be addressed by the early NB-IoT and Long-Term Evolution for Machines (LTE-M) based technologies. Since these cIoT networks will operate in a spatially distributed environment, there are various challenges to be addressed for tests and measurements of these networks. To meet these requirements, unified emulated and field testbeds for NB-IoT-networks were developed and used for extensive performance measurements. This paper analyses the results of these measurements with regard to RF coverage, signal quality, latency, and protocol consistency.
The monitoring of industrial environments ensures that highly automated processes run without interruption. However, even if the industrial machines themselves are monitored, the communication lines are currently not continuously monitored in todays installations. They are checked usually only during maintenance intervals or in case of error. In addition, the cables or connected machines usually have to be removed from the system for the duration of the test. To overcome these drawbacks, we have developed and implemented a cost-efficient and continuous signal monitoring of Ethernet-based industrial bus systems. Several methods have been developed to assess the quality of the cable. These methods can be classified to either passive or active. Active methods are not suitable if interruption of the communication is undesired. Passive methods, on the other hand, require oversampling, which calls for expensive hardware. In this paper, a novel passive method combined with undersampling targeting cost-efficient hardware is proposed.
Enabling ultra-low latency is one of the major drivers for the development of future cellular networks to support delay sensitive applications including factory automation, autonomous vehicles and tactile internet. Narrowband Internet of Things (NB-IoT) is a 3 rd Generation Partnership Project (3GPP) Release 13 standardized cellular network currently optimized for massive Machine Type Communication (mMTC). To reduce the latency in cellular networks, 3GPP has proposed some latency reduction techniques that include Semi Persistent Scheduling (SPS) and short Transmission Time Interval (sTTI). In this paper, we investigate the potential of adopting both techniques in NB-IoT networks and provide a comprehensive performance evaluation. We firstly analyze these techniques and then implement them in an open-source network simulator (NS3). Simulations are performed with a focus on Cat-NB1 User Equipment (UE) category to evaluate the uplink user-plane latency. Our results show that SPS and sTTI have the potential to greatly reduce the latency in NB-IoT systems. We believe that both techniques can be integrated into NB-IoT systems to position NB-IoT as a preferred technology for low data rate Ultra-Reliable Low-Latency Communication (URLLC) applications before 5G has been fully rolled out.
With the surge in global data consumption with proliferation of Internet of Things (IoT), remote monitoring and control is increasingly becoming popular with a wide range of applications from emergency response in remote regions to monitoring of environmental parameters. Mesh networks are being employed to alleviate a number of issues associated with single-hop communication such as low area coverage, reliability, range and high energy consumption. Low-power Wireless Personal Area Networks (LoWPANs) are being used to help realize and permeate the applicability of IoT. In this paper, we present the design and test of IEEE 802.15.4-compliant smart IoT nodes with multi-hop routing. We first discuss the features of the software stack and design choices in hardware that resulted in high RF output power and then present field test results of different baseline network topologies in both rural and urban settings to demonstrate the deployability and scalability of our solution.
A physical unclonable function (PUF) is a hardware circuit that produces a random sequence based on its manufacturing-induced intrinsic characteristics. In the past decade, silicon-based PUFs have been extensively studied as a security primitive for identification and authentication. The emerging field of printed electronics (PE) enables novel application fields in the scope of the Internet of Things (IoT) and smart sensors. In this paper, we design and evaluate a printed differential circuit PUF (DiffC-PUF). The simulation data are verified by Monte Carlo analysis. Our design is highly scalable while consisting of a low number of printed transistors. Furthermore, we investigate the best operating point by varying the PUF challenge configuration and analyzing the PUF security metrics in order to achieve high robustness. At the best operating point, the results show areliability of 98.37% and a uniqueness of 50.02%, respectively. This analysis also provides useful and comprehensive insights into the design of hybrid or fully printed PUF circuits. In addition, the proposed printed DiffC-PUF core has been fabricated with electrolyte-gated field-effect transistor technology to verify our design in hardware.
Low latency communication is essential to enable mission-critical machine-type communication (mMTC) use cases in cellular networks. Factory and process automation are major areas that require such low latency communication. In this paper, we investigate the potential of adopting the semi-persistent scheduling (SPS) latency reduction technique in narrowband LTE (NB-LTE) networks and provide a comprehensive performance evaluation. First, we investigate and implement SPS in an open-source network simulator (NS3). We perform simulations with a focus on LTE-M and Narrowband IoT (NB-IoT) systems and evaluate the impact of the SPS technique on the uplink latency of these narrowband systems in real industrial automation scenarios. The performance gain of adopting SPS is analyzed and the results is compared with the legacy dynamic scheduling. Our results show that SPS has the potential to reduce the latency of cellular Internet of Things (cIoT) networks. We believe that SPS can be integrated into LTE-M and NB-IoT systems to support low-latency industrial applications.