Refine
Document Type
Conference Type
- Konferenz-Abstract (3)
- Konferenz-Poster (2)
- Konferenzartikel (2)
- Sonstiges (1)
Is part of the Bibliography
- yes (8)
Keywords
- Kraftstoffmotor (1)
- Pflanzenöl (1)
- fuel engine (1)
Institute
Open Access
- Open Access (4)
- Closed Access (3)
Non-esterified plant oils gain ecological and economical importance, particularly in the EU where it is intended to increase the share of renewable energies. Plant oils do not require any chemical treatment so do not cause secondary pollution. The importance of plant oil will increase in Germany for mobile and stationary applications. The generation co-generation of heat and power is subsidized by the German “Erneuerbares Energiegesetz” and the “Kraft-Wärme-Kopplungsgesetz” when renewable fuels are used such as plant oils..
Plant oils have a much higher viscosity than conventional gas oil. It is mandatory to decrease the oil viscosity by heating prior to injection to assure proper injection and to avoid engine damage due to coke formation in the combustion chamber and at the injection nozzle. The German quality standard of Weihenstephan (RK-Qualitätsstandard 05/2000) for rape seed oil should be followed for use as diesel fuel. The chemical composition of plant oils is appreciably different in comparison to diesel fuels derived from mineral oils suggesting also different emission behavior.
Plant oils may be used as a sustainable, nearly CO2neutral fuel for diesel engines. This work investigates experimentally the particulate and gaseous emissions of diesel engines fuelled with different non-esterified, pure plant oils. The data are collected from three engines: a) Common rail 1.7 liter passenger car engine from Opel AG b) 12.8 liter truck engine from VOLVO c) Truck engine from MAN AG.
The emissions of the MAN engine have been used to perform AMES tests to analyze possible health impacts of plant oil operation. Finally, all emission results with plant oils have been compared to traditional gas oils.
Particle and Gaseous Emissions of Diesel Engines Fuelled by Different Non-Esterified Plant Oils
(2007)
The particulate matter and gas emissions of several plant oils are analyzed in the hot exhaust gas under various engine conditions at different speeds and loads The measurement data are compared to the emission values of conventional diesel fuel (gas oil). The investigation concentrates on a modern common rail TDI light duty diesel, four cylinders, for passenger cars. The differences in the gas and particulate matter emission - compared to conventional diesel fuel - are remarkably low for the diesel engine which is properly adjusted for the plant oils. Emission data of an old heavy duty diesel engine are also shown for comparison reasons and reveals large differences. Differences are found in the pressures of the indicator diagram, time resolved over the crank angle. Plant oils consistently exhibit a higher cylinder pressure. The TEM investigation confirms the differences found by the LPME (long path multi-wavelength extinction) on-line analysis.
Non-Esterified Plant Oils as Fuel -Engine Characteristics, Emissions and Mutagenic effects of PM-
(2009)
Plant oils may be used as a sustainable, nearly CO2 neutral fuel for diesel engines. This work investigates experimentally the particulate and gaseous emissions of diesel engines fuelled with non-esterified, pure plant oils with the quality standard of DIN V 51605 (Weihen-stephan RK-Qualitätsstandard 05/2000). The data are collected from three engines:
Common rail passenger car engine from OPEL AG
Truck engine from VOLVO
Truck engine from MAN AG
All engines have been correctly adjusted to plant oil operation.
The OPEL and VOLVO engines served for the basic investigations. The emissions of the MAN engine have been used to perform AMES tests to analyze possible health impacts of plant oil operation.
The experimental data show a reduction of particulate matter compared to traditional gasoil which may yield up to 50 % for. The particulate matter shows same primary particle sizes but the agglomerates as collected on TEM grids are different - the plant oil soot particles tend to form larger aggregates [4]. The gaseous emissions of CO and hydrocarbons HC are generally lower compared to the operation with gasoil. However, the NOX emissions are slightly higher. This may be contributed to the measured higher combustion chamber pressures and temperatures when fuelled by plant oils.
Emission samples have been extracted from ESC cycles of 13 step tests to perform the AMES test which give indication on carcinogen substances. The AMES test results gave no indication of mutagenic effects exceeding the detection limits. No significant differences could be found comparing the emissions of plant oil and gasoil operation. Thus, it can be stated that the emission from plant oil operation does not have a health impact different to traditional gas oil. This is in contrast to some other publications — a deeper insight shows that these investigations did not properly modify the engine for plant oils. It is mandatory to make the engine modification to pre-warm the plant oils to approx. 90°C prior to injection. The engine's warm-up phase needs special care to avoid any coking at the injection system and combustion chamber surfaces. The publications where a higher health risk was claimed to be found in the exhaust of plant oil fuels, did not pre-warm the plant oils — cold plant oils have been injected in the combustion chamber instead. This results in incomplete atomization and incomplete combustion with a lot of hazardous emission species (see also [4,11]. Such an operation will damage the engine after relatively short times and is, therefore, not realistic.
The investigated fuels had some influence on the engine characteristics. Higher temperatures and pressures in the cylinder have been detected for some plant oils compared to gasoil. This increase is explained by the higher oxygen content within the plant oils.
Pflanzenöle können einen gewissen Beitrag für eine erneuerbare, nahezu CO2-neutrale Kraftstoffversorgung leisten. Die nicht-veresterten Pflanzenöle haben im Gegensatz zu veresterten Ölen eine günstige Energie- und CO2-Bilanz. Deshalb werden hier die naturbelassenen, aber raffinierten Pflanzenöle auf ihre Eignung als Kraftstoff in Dieselmotoren und deren Emissionen detailliert untersucht. Versuche wurden mit drei verschiedenen Dieselmotoren durchgeführt.