Refine
Document Type
- Conference Proceeding (5)
- Part of a Book (2)
- Article (reviewed) (1)
Conference Type
- Konferenzartikel (5)
Is part of the Bibliography
- yes (8)
Keywords
- Blockchain (4)
- Machine learning (2)
- Security (2)
- Artificial Intelligence (1)
- Authentication (1)
- Authorization (1)
- Blockchains (1)
- Challenges in Action Recognition (1)
- Collaboration of Academia and Industry (1)
- Cybersecurity (1)
Institute
Open Access
- Closed (3)
- Open Access (3)
- Diamond (2)
- Closed Access (1)
Formal Description of Use Cases for Industry 4.0 Maintenance Processes Using Blockchain Technology
(2019)
Maintenance processes in Industry 4.0 applications try to achieve a high degree of quality to reduce the downtime of machinery. The monitoring of executed maintenance activities is challenging as in complex production setups, multiple stakeholders are involved. So, full transparency of the different activities and of the state of the machine can only be supported, if these stakeholders trust each other. Therefore, distributed ledger technologies, like Blockchain, can be promising candidates for supporting such applications. The goal of this paper is a formal description of business and technical interactions between non-trustful stakeholders in the context of Industry 4.0 maintenance processes using distributed ledger technologies. It also covers the integration of smart contracts for automated triggering of activities.
Harnessing the overall benefits of the latest advancements in artificial intelligence (AI) requires the extensive collaboration of academia and industry. These collaborations promote innovation and growth while enforcing the practical usefulness of newer technologies in real life. The purpose of this article is to outline the challenges faced during cross-collaboration between academia and industry. These challenges are also inspected with the help of an ongoing project titled “Quality Assurance of Machine Learning Applications” (Q-AMeLiA), in which three universities cooperate with five industry partners to make the product risk of AI-based products visible. Further, we discuss the hurdles and the key challenges in machine learning (ML) technology transformation from academia to industry based on robustness, simplicity, and safety. These challenges are an outcome of the lack of common standards, metrics, and missing regulatory considerations when state-of-the-art (SOTA) technology is developed in academia. The use of biased datasets involves ethical concerns that might lead to unfair outcomes when the ML model is deployed in production. The advancement of AI in small and medium sized enterprises (SMEs) requires more in terms of common tandardization of concepts rather than algorithm breakthroughs. In this paper, in addition to the general challenges, we also discuss domain specific barriers for five different domains i.e., object detection, hardware benchmarking, continual learning, action recognition, and industrial process automation, and highlight the steps necessary for successfully managing the cross-sectoral collaborations between academia and industry.
Digital transformation strengthens the interconnection of companies in order to develop optimized and better customized, cross-company business models. These models require secure, reliable, and traceable evidence and monitoring of contractually agreed information to gain trust between stakeholders. Blockchain technology using smart contracts allows the industry to establish trust and automate cross-company business processes without the risk of losing data control. A typical cross-company industry use case is equipment maintenance. Machine manufacturers and service providers offer maintenance for their machines and tools in order to achieve high availability at low costs. The aim of this chapter is to demonstrate how maintenance use cases are attempted by utilizing hyperledger fabric for building a chain of trust by hardened evidence logging of the maintenance process to achieve legal certainty. Contracts are digitized into smart contracts automating business that increase the security and mitigate the error-proneness of the business processes.
In recent years, both the Internet of Things (IoT) and blockchain technologies have been highly influential and revolutionary. IoT enables companies to embrace Industry 4.0, the Fourth Industrial Revolution, which benefits from communication and connectivity to reduce cost and to increase productivity through sensor-based autonomy. These automated systems can be further refined with smart contracts that are executed within a blockchain, thereby increasing transparency through continuous and indisputable logging. Ideally, the level of security for these IoT devices shall be very high, as they are specifically designed for this autonomous and networked environment. This paper discusses a use case of a company with legacy devices that wants to benefit from the features and functionality of blockchain technology. In particular, the implications of retrofit solutions are analyzed. The use of the BISS:4.0 platform is proposed as the underlying infrastructure. BISS:4.0 is
intended to integrate the blockchain technologies into existing enterprise environments. Furthermore, a security analysis of IoT and blockchain present attacks and countermeasures are presented that are identified and applied to the mentioned use case.
The importance of machine learning (ML) has been increasing dramatically for years. From assistance systems to production optimisation to healthcare support, almost every area of daily life and industry is coming into contact with machine learning. Besides all the benefits ML brings, the lack of transparency and difficulty in creating traceability pose major risks. While solutions exist to make the training of machine learning models more transparent, traceability is still a major challenge. Ensuring the identity of a model is another challenge, as unnoticed modification of a model is also a danger when using ML. This paper proposes to create an ML Birth Certificate and ML Family Tree secured by blockchain technology. Important information about training and changes to the model through retraining can be stored in a blockchain and accessed by any user to create more security and traceability about an ML model.
The importance of machine learning has been increasing dramatically for years. From assistance systems to production optimisation to support the health sector, almost every area of daily life and industry comes into contact with machine learning. Besides all the benefits that ML brings, the lack of transparency and the difficulty in creating traceability pose major risks. While there are solutions that make the training of machine learning models more transparent, traceability is still a major challenge. Ensuring the identity of a model is another challenge. Unnoticed modification of a model is also a danger when using ML. One solution is to create an ML birth certificate and an ML family tree secured by blockchain technology. Important information about training and changes to the model through retraining can be stored in a blockchain and accessed by any user to create more security and traceability about an ML model.
As industrial networks continue to expand and connect more devices and users, they face growing security challenges such as unauthorized access and data breaches. This paper delves into the crucial role of security and trust in industrial networks and how trust management systems (TMS) can mitigate malicious access to these networks.The TMS presented in this paper leverages distributed ledger technology (blockchain) to evaluate the trustworthiness of blockchain nodes, including devices and users, and make access decisions accordingly. While this approach is applicable to blockchain, it can also be extended to other areas. This approach can help prevent malicious actors from penetrating industrial networks and causing harm. The paper also presents the results of a simulation to demonstrate the behavior of the TMS and provide insights into its effectiveness.