Refine
Year of publication
Document Type
- Conference Proceeding (25)
- Contribution to a Periodical (21)
- Part of a Book (19)
- Article (unreviewed) (15)
- Article (reviewed) (12)
- Report (11)
- Book (9)
- Study Thesis (1)
Conference Type
- Konferenzartikel (22)
- Sonstiges (2)
- Konferenz-Abstract (1)
Is part of the Bibliography
- yes (113)
Keywords
- Energieversorgung (6)
- Haustechnik (5)
- Regelungstechnik (5)
- Gebäudeklimatisierung (4)
- TABS (4)
- Energiemanagement (3)
- Energietechnik (3)
- Fotovoltaik (3)
- MPC (3)
- Monitoring (3)
Institute
Open Access
- Closed Access (53)
- Open Access (40)
- Bronze (10)
- Closed (5)
- Gold (2)
In this study, a high-performance controller is proposed for single-phase grid-tied energy storage systems (ESSs). To control power factor and current harmonics and manage time-shifting of energy, the ESS is required to have low steady-state error and fast transient response. It is well known that fast controllers often lack the required steady-state accuracy and trade-off is inevitable. A hybrid control system is therefore presented that combines a simple yet fast proportional derivative controller with a repetitive controller which is a type of learning controller with small steady-state error, suitable for applications with periodic grid current harmonic waveforms. This results in an improved system with distortion-free, high power factor grid current. The proposed controller model is developed and design parameters are presented. The stability analysis for the proposed system is provided and the theoretical analysis is verified through stability, transient and steady-state simulations.
In this paper, a new method is demonstrated for online remote simulation of photovoltaic systems. The required communication technology for the data exchange is introduced and the methods of PV generator parameter extraction for the simulation models are analysed. The method shown for parameter extraction from the manufacturer data is especially useful for the commissioning procedure, where the measured installed power is transferred to standard test conditions using the simulation model and can then be easily compared with the design power. At a simulation accuracy of 2% using the software environment INSEL ® any problems with the PV generator can reliably be detected. Online simulation of a grid connected PV generator is then carried out during the operation of the photovoltaic plant. The visualisation includes both the monitored and the simulated online data sets, so that a very efficient fault detection scheme is available. The method is implemented and validated on several grid connected photovoltaic power plants in Germany. It is excellently suited to provide automatic and real time fault detection and significantly improve the commissioning procedure for photovoltaic plants of all sizes.
Zum ersten Mal gibt es mit dem kooperativen Promotionskolleg über „Kleinskalige erneuerbare Energiesysteme – KleE“ für hochqualifizierte Absolventen der Hochschule Offenburg die Möglichkeit zur Promotion innerhalb des engen wissenschaftlichen Austauschs eines Doktorandenkollegs. Betreut werden sie gemeinsam von je einem Universitätsprofessor und einem Hochschulprofessor. In Zusammenarbeit mit der Albert-Ludwigs-Universität Freiburg, dem Zentrum für Erneuerbare Energien (ZEE), und den Fraunhofer-Instituten für Solare Energiesysteme (ISE) sowie für Physikalische Messtechnik (IPM) forschen 15 Doktorandinnen und Doktoranden im Promotionskolleg KleE an interdisziplinären Forschungsthemen.
Dieses Fachbuch gibt einen vertieften Einblick in das dynamische Verhalten von thermoaktiven Bauteilsystemen. Es wird eine neu entwickelte und vielfach erprobte, selbstlernende und vorausschauende TABS-Steuerung vorgestellt. Dazu wird auf die Erfordernisse einer effektiven TABS-Steuerung eingegangen und die Grundlagen und Funktionsweise der neu entwickelten AMLR-Steuerung erläutert. Anhand mehrerer Anwendungsbeispiele wird die Umsetzung in die bauliche Praxis erläutert und mit Hilfe von umfangreichen Messergebnissen die Funktion der neuen AMLR-Steuerung nachgewiesen. Abschließend werden Empfehlungen für die Anwendung von AMLR in der baulichen TABS-Praxis hinsichtlich Anlagenhydraulik und Umsetzung in der Gebäudeautomation gegeben.
Über zwei Jahrzehnte hat sich an der Hochschule Offenburg eine Forschungsgruppe etabliert, die die beiden Bereiche Gebäudeautomation und nachhaltige Energietechnik zusammenführte. Anfangs ging es darum, Potentiale der internetbasierten Wetterprognostik und modell-basierten Anlagensteuerung für die Verbesserung des Komforts und der Energieeffizienz im Gebäude zu nutzen. Im Rahmen von Forschungs- und Entwicklungsarbeiten mit Einsatz von dynamischen Gebäudesimulationen konnte ein Algorithmus gefunden werden, der es ermöglichte auf Basis von prognostizierter Außentemperatur und Sonneneinstrahlung den Energiebedarf eines Bürogebäudes für den Folgetag vorherzusagen. In Verbindung mit der Gebäudeautomation entstand so die adaptive und prädiktive TABS-Steuerung AMLR.
Rund ein Drittel (2.529 PJ) der in Deutschland verwendeten Endenergie wird von der Industrie genutzt. Es gibt viele Industriebereiche in denen die Prozessluftaufbereitung eine wichtige Rolle spielt. Beispielhaft ist die Lebensmittel-, die Pharma- und die Halbleiterindustrie zu nennen. In all diesen Bereichen wird Luft mit bestimmten Konditionen benötigt, um Produkte präzise und unter Einhaltung aller Auflagen herstellen zu können. Die Luftaufbereitung ist meist mit einem großen Energieaufwand verbunden. Hierzu ist es erforderlich, Prozesswärme und/oder Prozesskälte zur Verfügung zu haben.