Refine
Document Type
- Article (reviewed) (16)
- Conference Proceeding (3)
- Article (unreviewed) (1)
Conference Type
- Konferenzartikel (3)
Language
- English (20)
Is part of the Bibliography
- yes (20)
Keywords
- oxide electronics (2)
- printed electronics (2)
- Electrolyte-gated transistors (1)
- Feldeffekt (1)
- Halbleiter (1)
- Printed Electronics (1)
- Transistor (1)
- Transistortechnologie (1)
- copper oxide (1)
- diode modeling (1)
Institute
Open Access
- Closed Access (13)
- Open Access (4)
- Bronze (1)
- Closed (1)
- Gold (1)
Many different methods, such as screen printing, gravure, flexography, inkjet etc., have been employed to print electronic devices. Depending on the type and performance of the devices, processing is done at low or high temperature using precursor- or particle-based inks. As a result of the processing details, devices can be fabricated on flexible or non-flexible substrates, depending on their temperature stability. Furthermore, in order to reduce the operating voltage, printed devices rely on high-capacitance electrolytes rather than on dielectrics. The printing resolution and speed are two of the major challenging parameters for printed electronics. High-resolution printing produces small-size printed devices and high-integration densities with minimum materials consumption. However, most printing methods have resolutions between 20 and 50 μm. Printing resolutions close to 1 μm have also been achieved with optimized process conditions and better printing technology.
The final physical dimensions of the devices pose severe limitations on their performance. For example, the channel lengths being of this dimension affect the operating frequency of the thin-film transistors (TFTs), which is inversely proportional to the square of channel length. Consequently, short channels are favorable not only for high-frequency applications but also for high-density integration. The need to reduce this dimension to substantially smaller sizes than those possible with today’s printers can be fulfilled either by developing alternative printing or stamping techniques, or alternative transistor geometries. The development of a polymer pen lithography technique allows scaling up parallel printing of a large number of devices in one step, including the successive printing of different materials. The introduction of an alternative transistor geometry, namely the vertical Field Effect Transistor (vFET), is based on the idea to use the film thickness as the channel length, instead of the lateral dimensions of the printed structure, thus reducing the channel length by orders of magnitude. The improvements in printing technologies and the possibilities offered by nanotechnological approaches can result in unprecedented opportunities for the Internet of Things (IoT) and many other applications. The vision of printing functional materials, and not only colors as in conventional paper printing, is attractive to many researchers and industries because of the added opportunities when using flexible substrates such as polymers and textiles. Additionally, the reduction of costs opens new markets. The range of processing techniques covers laterally-structured and large-area printing technologies, thermal, laser and UV-annealing, as well as bonding techniques, etc. Materials, such as conducting, semiconducting, dielectric and sensing materials, rigid and flexible substrates, protective coating, organic, inorganic and polymeric substances, energy conversion and energy storage materials constitute an enormous challenge in their integration into complex devices.
In this report, we have studied field-effect transistors (FETs) using low-density alumina for electrolytic gating. Device layers have been prepared starting from the structured ITO glasses by printing the In 2 O 3 channels, low-temperature atomic layer deposition (ALD) of alumina (Al 2 O 3 ), and printing graphene top gates. The transistor performance could be deliberately changed by alternating the ambient humidity; furthermore, ID,ON/ID,OFF-ratios of up to seven orders of magnitude and threshold voltages between 0.66 and 0.43 V, decreasing with an increasing relative humidity between 40% and 90%, could be achieved. In contrast to the common usage of Al 2 O 3 as the dielectric in the FETs, our devices show electrolyte-typegating behavior. This is a result from the formation of protons on the Al 2 O 3 surfaces at higher humidities. Due to the very high local capacitances of the Helmholtz double layers at the channel surfaces, the operation voltage can be as low as 1 V. At low humidities (≤30%), the solid electrolyte dries out and the performance breaks down; however, it can fully reversibly be regained upon a humidity increase. Using ALD-derived alumina as solid electrolyte gating material, thus, allows low-voltage operation and provides a chemically stable gating material while maintaining low process temperatures. However, it has proven to be highly humidity-dependent in its performance.
Fully Printed Inverters using Metal‐Oxide Semiconductor and Graphene Passives on Flexible Substrates
(2020)
Printed and flexible metal‐oxide transistor technology has recently demonstrated great promise due to its high performance and robust mechanical stability. Herein, fully printed inverter structures using electrolyte‐gated oxide transistors on a flexible polyimide (PI) substrate are discussed in detail. Conductive graphene ink is printed as the passive structures and interconnects. The additive printed transistors on PI substrates show an on/off ratio of 106 and show mobilities similar to the state‐of‐the‐art printed transistors on rigid substrates. Printed meander structures of graphene are used as pull‐up resistances in a transistor–resistor logic to create fully printed inverters. The printed and flexible inverters show a signal gain of 3.5 and a propagation delay of 30 ms. These printed inverters are able to withstand a tensile strain of 1.5% following more than 200 cycles of mechanical bending. The stability of the electrical direct current (DC) properties has been observed over a period of 5 weeks. These oxide transistor‐based fully printed inverters are relevant for digital printing methods which could be implemented into roll‐to‐roll processes.
Printed electronics (PE) enables disruptive applications in wearables, smart sensors, and healthcare since it provides mechanical flexibility, low cost, and on-demand fabrication. The progress in PE raises trust issues in the supply chain and vulnerability to reverse engineering (RE) attacks. Recently, RE attacks on PE circuits have been successfully performed, pointing out the need for countermeasures against RE, such as camouflaging. In this article, we propose a printed camouflaged logic cell that can be inserted into PE circuits to thwart RE. The proposed cell is based on three components achieved by changing the fabrication process that exploits the additive manufacturing feature of PE. These components are optically look-alike, while their electrical behaviors are different, functioning as a transistor, short, and open. The properties of the proposed cell and standard PE cells are compared in terms of voltage swing, delay, power consumption, and area. Moreover, the proposed camouflaged cell is fabricated and characterized to prove its functionality. Furthermore, numerous camouflaged components are fabricated, and their (in)distinguishability is assessed to validate their optical similarities based on the recent RE attacks on PE. The results show that the proposed cell is a promising candidate to be utilized in camouflaging PE circuits with negligible overhead.
Electrolyte-gated thin-film transistors (EGTs) with indium oxide channel, and expected lifetime of three months, enable low-voltage operation (~1 V) in the field of printed electronics (PEs). The channel width of our printed EGTs is varied between 200 and 1000 μm, whereas a channel length between 10 and 100 μm is used. Due to the lack of uniform performance p-type metal oxide semiconductors, n-type EGTs and passive elements are used to design circuits. For logic gates, transistor-resistor logic has been employed so far, but depletion and enhancement-mode EGTs in a transistor-transistor logic boost the circuit performance in terms of delay and signal swing. In this article, the threshold voltage of the EGT, which determines the operation mode, is tuned through sizing of the EGTs channel geometry. The feasibility of both transistor operation modes is demonstrated for logic gates and ring oscillators. An inverter operating at a supply voltage of 1 V shows a maximum gain of 9.6 and a propagation delay time of 0.7 ms, which represents an improvement of ~ 2x for the gain and oscillation frequency, in comparison with the resistor-transistor logic design. Moreover, the power consumption is reduced by 6x.
Morphological transition of a rod-shaped phase into a string of spherical particles is commonly observed in the microstructures of alloys during solidification (Ratke and Mueller, 2006). This transition phenomenon can be explained by the classic Plateau-Rayleigh theory which was derived for fluid jets based on the surface area minimization principle. The quintessential work of Plateau-Rayleigh considers tiny perturbations (amplitude much less than the radius) to the continuous phase and for large amplitude perturbations, the breakup condition for the rod-shaped phase is still a knotty issue. Here, we present a concise thermodynamic model based on the surface area minimization principle as well as a non-linear stability analysis to generalize Plateau-Rayleigh’s criterion for finite amplitude perturbations. Our results demonstrate a breakup transition from a continuous phase via dispersed particles towards a uniform-radius cylinder, which has not been found previously, but is observed in our phase-field simulations. This new observation is attributed to a geometric constraint, which was overlooked in former studies. We anticipate that our results can provide further insights on microstructures with spherical particles and cylinder-shaped phases.
Electrolyte-gated transistors (EGTs) represent an interesting alternative to conventional dielectric-gating to reduce the required high supply voltage for printed electronic applications. Here, a type of ink-jet printable ion-gel is introduced and optimized to fabricate a chemically crosslinked ion-gel by self-assembled gelation, without additional crosslinking processes, e.g., UV-curing. For the self-assembled gelation, poly(vinyl alcohol) and poly(ethylene-alt-maleic anhydride) are used as the polymer backbone and chemical crosslinker, respectively, and 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM][OTf]) is utilized as an ionic species to ensure ionic conductivity. The as-synthesized ion-gel exhibits an ionic conductivity of ≈5 mS cm−1 and an effective capacitance of 5.4 µF cm−2 at 1 Hz. The ion-gel is successfully employed in EGTs with an indium oxide (In2O3) channel, which shows on/off-ratios of up to 1.3 × 106 and a subthreshold swing of 80.62 mV dec−1.
Printed electronics can benefit from the deployment of electrolytesas gate insulators,which enables a high gate capacitance per unit area (1–10 μFcm−2) due to the formation of electrical double layers (EDLs). Consequently, electrolyte-gated field-effect transistors (EGFETs) attain high-charge carrier densities already in the subvoltage regime, allowing for low-voltage operation of circuits and systems. This article presents a systematic study of lumped terminal capacitances of printed electrolyte-gated transistors under various dc bias conditions. We perform voltage-dependent impedancemeasurements and separate extrinsic components from the lumped terminal capacitance.
The proposed Meyer-like capacitance model, which also accounts for the nonquasi-static (NQS) effect, agrees well with experimental data. Finally, to verify the model, we implement it in Verilog-A and simulate the transient response of an inverter and a ring oscillator circuit. Simulation results are in good agreement with the measurement data of fabricated devices.
Printed electrolyte-gated oxide electronics is an emerging electronic technology in the low voltage regime (≤1 V). Whereas in the past mainly dielectrics have been used for gating the transistors, many recent approaches employ the advantages of solution processable, solid polymer electrolytes, or ion gels that provide high gate capacitances produced by a Helmholtz double layer, allowing for low-voltage operation. Herein, with special focus on work performed at KIT recent advances in building electronic circuits based on indium oxide, n-type electrolyte-gated field-effect transistors (EGFETs) are reviewed. When integrated into ring oscillator circuits a digital performance ranging from 250 Hz at 1 V up to 1 kHz is achieved. Sequential circuits such as memory cells are also demonstrated. More complex circuits are feasible but remain challenging also because of the high variability of the printed devices. However, the device inherent variability can be even exploited in security circuits such as physically unclonable functions (PUFs), which output a reliable and unique, device specific, digital response signal. As an overall advantage of the technology all the presented circuits can operate at very low supply voltages (0.6 V), which is crucial for low-power printed electronics applications.
Electrolyte-gated, printed field-effect transistors exhibit high charge carrier densities in the channel and thus high on-currents at low operating voltages, allowing for the low-power operation of such devices. This behavior is due to the high area-specific capacitance of the device, in which the electrolyte takes the role of the dielectric layer of classical architectures. In this paper, we investigate intrinsic double-layer capacitances of ink-jet printed electrolyte-gated inorganic field-effect transistors in both in-plane and top-gate architectures by means of voltage-dependent impedance spectroscopy. By comparison with deembedding structures, we separate the intrinsic properties of the double-layer capacitance at the transistor channel from parasitic effects and deduce accurate estimates for the double-layer capacitance based on an equivalent circuit fitting. Based on these results, we have performed simulations of the electrolyte cutoff frequency as a function of electrolyte and gate resistances, showing that the top-gate architecture has the potential to reach the kilohertz regime with proper optimization of materials and printing process. Our findings additionally enable accurate modeling of the frequency-dependent capacitance of electrolyte/ion gel-gated devices as required in the small-signal analysis in the circuit simulation.
In the domain of printed electronics (PE), field-effect transistors (FETs) with an oxide semiconductor channel are very promising. In particular, the use of high gate-capacitance of the composite solid polymer electrolytes (CSPEs) as a gate-insulator ensures extremely low voltage requirements. Besides high gate capacitance, such CSPEs are proven to be easily printable, stable in air over wide temperature ranges, and possess high ion conductivity. These CSPEs can be sensitive to moisture, especially for high surface-to-volume ratio printed thin films. In this paper, we provide a comprehensive experimental study on the effect of humidity on CSPE-gated single transistors. At the circuit level, the performance of ring oscillators (ROs) has been compared for various humidity conditions. The experimental results of the electrolyte-gated FETs (EGFETs) demonstrate rather comparable currents between 30%-90% humidity levels. However, the shifted transistor parameters lead to a significant performance change of the RO frequency behavior. The study in this paper shows the need of an impermeable encapsulation for the CSPE-gated FETs to ensure identical performance at all humidity conditions.
Oxide semiconductors have the potential to increase the performance of inkjet printed microelectronic devices such as field-effect transistors (FETs), due to their high electron mobilities. Typical metal oxides are n-type semiconductors, while p-type oxides, although realizable, exhibit lower carriermobilities. Therefore, the circuit design based on oxide semiconductors is mostly in n-type logic only. Here we present an inkjet printed pn-diode based on p- and n-type oxide semiconductors.Copper oxide or nickel oxide is used as p-typesemiconductor whereas n-typesemiconductor is realized with indium oxide. Themeasurements show that the pn-diodes operate in the voltage window typical for printed electronics and the emission coefficient is 1.505 and 2.199 for the copper oxide based and nickel oxidebased pn-diode, respectively.Furthermore, a pn-diode model is developed and integrable into a circuit simulator.
Electrolyte-Gated Field-Effect Transistors Based on Oxide Semiconductors: Fabrication and Modeling
(2017)
Oxide semiconductors are highly promising candidates for the most awaited, next-generation electronics, namely, printed electronics. As a fabrication route for the solution-processed/printed oxide semiconductors, photonic curing is becoming increasingly popular, as compared to the conventional thermal curing method; the former offers numerous advantages over the latter, such as low process temperatures and short exposure time and thereby, high throughput compatibility. Here, using dissimilar photonic curing concepts (UV–visible light and UV-laser), we demonstrate facile fabrication of high performance In2O3 field-effect transistors (FETs). Beside the processing related issues (temperature, time etc.), the other known limitation of oxide electronics is the lack of high performance p-type semiconductors, which can be bypassed using unipolar logics from high mobility n-type semiconductors alone. Interestingly, here we have found that our chosen distinct photonic curing methods can offer a large variation in threshold voltage, when they are fabricated from the same precursor ink. Consequently, both depletion and enhancement-mode devices have been achieved which can be used as the pull-up and pull-down transistors in unipolar inverters. The present device fabrication recipe demonstrates fast processing of low operation voltage, high performance FETs with large threshold voltage tunability.
A printed electronics technology has the advantage of additive and extremely low-cost fabrication compared with the conventional silicon technology. Specifically, printed electrolyte-gated field-effect transistors (EGFETs) are attractive for low-cost applications in the Internet-of-Things domain as they can operate at low supply voltages. In this paper, we propose an empirical dc model for EGFETs, which can describe the behavior of the EGFETs smoothly and accurately over all regimes. The proposed model, built by extending the Enz-Krummenacher-Vittoz model, can also be used to model process variations, which was not possible previously due to fixed parameters for near threshold regime. It offers a single model for all the operating regions of the transistors with only one equation for the drain current. Additionally, it models the transistors with a less number of parameters but higher accuracy compared with existing techniques. Measurement results from several fabricated EGFETs confirm that the proposed model can predict the I-V more accurately compared with the state-of-the-art models in all operating regions. Additionally, the measurements on the frequency of a fabricated ring oscillator are only 4.7% different from the simulation results based on the proposed model using values for the switching capacitances extracted from measurement data, which shows more than 2× improvement compared with the state-of-the-art model.
Printed electronics offers certain technological advantages over its silicon based counterparts, such as mechanical flexibility, low process temperatures, maskless and additive manufacturing process, leading to extremely low cost manufacturing. However, to be exploited in applications such as smart sensors, Internet of Things and wearables, it is essential that the printed devices operate at low supply voltages. Electrolyte gated field effect transistors (EGFETs) using solution-processed inorganic materials which are fully printed using inkjet printers at low temperatures are very promising candidates to provide such solutions. In this paper, we discuss the technology, process, modeling, fabrication, and design aspect of circuits based on EGFETs. We show how the measurements performed in the lab can accurately be modeled in order to be integrated in the design automation tool flow in the form of a Process Design Kit (PDK). We also review some of the remaining challenges in this technology and discuss our future directions to address them.
High mobility, electrolyte-gated transistors (EGTs) show high DC performance at low voltages (< 2 V). To model those EGTs, we have used different models for the below and the above threshold regime with appropriate interpolation to ensure continuity and smoothness over all regimes. This empirical model matches very well with our measured results obtained by the electrical characterization of EGTs.