Refine
Document Type
- Conference Proceeding (3)
- Article (reviewed) (1)
- Part of a Book (1)
Conference Type
- Konferenzartikel (3)
Language
- English (5)
Is part of the Bibliography
- yes (5)
Keywords
- Blockchain (4)
- Machine learning (2)
- Cybersecurity (1)
- IT-Sicherheit (1)
- Industrie 4.0 (1)
- Industry Use cases (1)
- Poisoning (1)
- Security (1)
- Traceability (1)
- Verifiability (1)
Institute
Open Access
- Closed (2)
- Open Access (2)
- Closed Access (1)
- Diamond (1)
Formal Description of Use Cases for Industry 4.0 Maintenance Processes Using Blockchain Technology
(2019)
Maintenance processes in Industry 4.0 applications try to achieve a high degree of quality to reduce the downtime of machinery. The monitoring of executed maintenance activities is challenging as in complex production setups, multiple stakeholders are involved. So, full transparency of the different activities and of the state of the machine can only be supported, if these stakeholders trust each other. Therefore, distributed ledger technologies, like Blockchain, can be promising candidates for supporting such applications. The goal of this paper is a formal description of business and technical interactions between non-trustful stakeholders in the context of Industry 4.0 maintenance processes using distributed ledger technologies. It also covers the integration of smart contracts for automated triggering of activities.
Digital transformation strengthens the interconnection of companies in order to develop optimized and better customized, cross-company business models. These models require secure, reliable, and traceable evidence and monitoring of contractually agreed information to gain trust between stakeholders. Blockchain technology using smart contracts allows the industry to establish trust and automate cross-company business processes without the risk of losing data control. A typical cross-company industry use case is equipment maintenance. Machine manufacturers and service providers offer maintenance for their machines and tools in order to achieve high availability at low costs. The aim of this chapter is to demonstrate how maintenance use cases are attempted by utilizing hyperledger fabric for building a chain of trust by hardened evidence logging of the maintenance process to achieve legal certainty. Contracts are digitized into smart contracts automating business that increase the security and mitigate the error-proneness of the business processes.
In recent years, both the Internet of Things (IoT) and blockchain technologies have been highly influential and revolutionary. IoT enables companies to embrace Industry 4.0, the Fourth Industrial Revolution, which benefits from communication and connectivity to reduce cost and to increase productivity through sensor-based autonomy. These automated systems can be further refined with smart contracts that are executed within a blockchain, thereby increasing transparency through continuous and indisputable logging. Ideally, the level of security for these IoT devices shall be very high, as they are specifically designed for this autonomous and networked environment. This paper discusses a use case of a company with legacy devices that wants to benefit from the features and functionality of blockchain technology. In particular, the implications of retrofit solutions are analyzed. The use of the BISS:4.0 platform is proposed as the underlying infrastructure. BISS:4.0 is
intended to integrate the blockchain technologies into existing enterprise environments. Furthermore, a security analysis of IoT and blockchain present attacks and countermeasures are presented that are identified and applied to the mentioned use case.
The importance of machine learning (ML) has been increasing dramatically for years. From assistance systems to production optimisation to healthcare support, almost every area of daily life and industry is coming into contact with machine learning. Besides all the benefits ML brings, the lack of transparency and difficulty in creating traceability pose major risks. While solutions exist to make the training of machine learning models more transparent, traceability is still a major challenge. Ensuring the identity of a model is another challenge, as unnoticed modification of a model is also a danger when using ML. This paper proposes to create an ML Birth Certificate and ML Family Tree secured by blockchain technology. Important information about training and changes to the model through retraining can be stored in a blockchain and accessed by any user to create more security and traceability about an ML model.
The importance of machine learning has been increasing dramatically for years. From assistance systems to production optimisation to support the health sector, almost every area of daily life and industry comes into contact with machine learning. Besides all the benefits that ML brings, the lack of transparency and the difficulty in creating traceability pose major risks. While there are solutions that make the training of machine learning models more transparent, traceability is still a major challenge. Ensuring the identity of a model is another challenge. Unnoticed modification of a model is also a danger when using ML. One solution is to create an ML birth certificate and an ML family tree secured by blockchain technology. Important information about training and changes to the model through retraining can be stored in a blockchain and accessed by any user to create more security and traceability about an ML model.