Refine
Year of publication
Document Type
- Article (reviewed) (29)
- Conference Proceeding (10)
- Article (unreviewed) (6)
- Book (2)
- Report (2)
- Part of a Book (1)
- Contribution to a Periodical (1)
Conference Type
- Konferenzartikel (10)
Is part of the Bibliography
- yes (51)
Keywords
- Bauteil (3)
- Bürohaus (3)
- Energieeffizienz (3)
- Klimatechnik (3)
- Raumklima (3)
- Energietechnik (2)
- Energieversorgung (2)
- Gebäude (2)
- Haustechnik (2)
- Aktivierung (1)
Institute
Open Access
- Closed Access (20)
- Open Access (18)
- Closed (5)
- Diamond (2)
- Gold (2)
- Bronze (1)
Vulnerabilitätsanalyse "Hitzestress und menschliche Gesundheit" am Beispiel der Stadt Reutlingen
(2020)
In diesem Modellprojekt wird das Schutzgut "Menschliche Gesundheit" insbesondere unter dem Gesichtspunkt der im Rahmen des globalen Klimawandels zu erwartenden Überhitzung der Städte ("städtische Hitzeinseln") betrachtet.
In der Großstadt Reutlingen ("Tor zur Schwäbischen Alb/112.500 EW) mit ihrer Pfortenlage am Rande der Schwäbischen Alb und der Höhenlage (400-800 m) sowie der Bebauungsdichte werden bis 2050 bzw. 2100 (Strategie zur Anpassung an den Klimawandel Baden-Württemberg - Vulnerabilitäten und Klimaanpassungsmaßnahmen, 2015) die massivsten Auswirkungen bezüglich Aufenthaltsbehaglichkeit und Gesundheitsfolgen in Reutlingen erwartet.
Der Untersuchungsschwerpunkt liegt im Wirkungsbereich Mensch-Siedlung, d.h. in der Betrachtung von empfindlichen Bevölkerungspopulationen (z.B. ältere Menschen) und hitzeempfindlichen Nutzungsstrukturen (z.B. verdichteten städtischen Siedlungsflächen). Insbesondere die bereits in der abgeschlossenen Gesamtstädtischen Klimaanalyse ermittelten überwärmten Areale ("hot spots") und die im Rahmen des Klimawandels für 2020-2050 zukünftig zu erwartende Hitzestressbelastung bei empfindlichen Bevölkerungsgruppen in Stadtquartieren und Funktionsbauten, stehen im Zenit der Untersuchung.
Dabei wird über das Kriterium Empfindlichkeit (Basis sind z.B. quartierbezogene Datenstrukturen von Älteren, Einrichtungen wie Krankenhäuser, Kinderpflegeeinrichtungen, Alten- Behinderten- und Pflegeheime) die zukünftige Hitzestress-Belastung für Reutlingen erarbeitet. Weiteres wichtiges Kriterium ist die Betroffenheit nach Standortsituation (Höhenlage, Durchlüftungsverhältnisse, Bioklima/PMV = Maß für die bioklimatische Behaglichkeit) und die Anzahl hitzestressgeplagter Menschen (Kinder, Kranke, Ältere). Insbesondere für das Szenarium 2020 bis 2050 (s. Strategie zur Anpassung an den Klimawandel Baden-Württemberg - Vulnerabilitäten und Klimaanpassungsmaßnahmen, 2015) werden objekt- bzw. einrichtungsbezogen (z.B. Altenpflegeeinrichtungen) sowie quartiersspezifisch (Stadtstrukturtypen) die Auswirkungen bzw. Verwundbarkeiten erarbeitet. Dieser objektspezifische (bauklimatische) Ansatz, die innovative Indikatorenbildung zur situativen kommunalen Anwendbarkeit auch über Reutlingen hinaus sowie der partizipative Ansatz mit Nichtregierungsorganisationen (NGO´s) begründet den Modellcharakter ("Reutlinger Modell") dieser Untersuchung. Das Modellprojekt bildet das zweite Modul in einem dreiteiligen Klimaanpassungskonzept für die Stadt Reutlingen.
The German Weather Service (DWD) releases a heat warning, when the weather forecast provides a warm, humid, sunny, and windless weather condition during the next days. The heat stress is calculated by the so called Klima-Michel model. If the apparent air temperature exceeds ca. 32°C / 38°C, there is a strong / extreme heat stress. The smallest forecast area is each administrative district. As people (and especially the vulnerable population) stay most of the time indoors, the heat health warning system was extended by the prediction of heat stress in typical rooms. Therewith it is feasible to forecast the heat stress using a combination of the outdoor and indoor heat stress. The prediction for the indoor heat stress is based on the same weather forecast like the Heat Health Warning Systems (HHWS).and calculates the heat stress by the PMV-model (predicted mean vote). Based on a sophisticated data analysis and simulation study, realistic but summer-critical living situations were defined and implemented in the building simulation program ESP-r. As the simulation runs especially for extreme weather conditions, a simplified building model cannot be used. Standardized input/output routines and an adaptive handover of start values provide for short run times for each forecast area. Good building designs and urban planning provide effective measures to reduce heat stress in cities. However, we have to also pay attention to the present building stock under climate change and a higher heat-wave risk. The extended German HHWS provide information for the emergency services to support the social assistants during heat waves.
This study presents some results from a monitoring project with night ventilation and earthto-air heat exchanger. Both techniques refer to air-based low-energy cooling. As these technologies are limited to specific boundary conditions (e.g. moderate summer climate, low temperatures during night, or low ground temperatures, respectively), water-based low-energy cooling may be preferred in many projects. A comparison of the night-ventilated building with a ground-cooled building shows major differences in both concepts.
The energy system of the future will transform from the current centralised fossil based to a decentralised, clean, highly efficient, and intelligent network. This transformation will require innovative technologies and ideas like trigeneration and the crowd energy concept to pave the way ahead. Even though trigeneration systems are extremely energy efficient and can play a vital role in the energy system, turning around their deployment is hindered by various barriers. These barriers are theoretically analysed in a multiperspective approach and the role decentralised trigeneration systems can play in the crowd energy concept is highlighted. It is derived from an initial literature research that a multiperspective (technological, energy-economic, and user) analysis is necessary for realising the potential of trigeneration systems in a decentralised grid. And to experimentally quantify these issues we are setting up a microscale trigeneration lab at our institute and the motivation for this lab is also briefly introduced.
Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.
The current methods used to assess the energy performance of ventilation devices do not consider all the aspects necessary for a comprehensive evaluation of decentralised ventilation concepts and can only be partially adapted to their needs. In order to improve the energy evaluation and to ensure the comparability of different systems, a calorimetric method was developed and implemented in test facilities for the evaluation of two decentralised devices: one equipped with a recuperative counter flow heat exchanger and one with a regenerative heat exchanger. This method, based on direct measurements of the heating load in an insulated test room, includes the effect of the electrical consumption of the fans on the energy performance of the ventilation devices. The calorimetric evaluation method was extended to a seasonal evaluation on the basis of a heating-degree-day method implemented for a warm, a cool and a moderate location in Europe: Athens, Strasbourg and Copenhagen. All the results are above 50% efficiency for both devices, even in Athens where the use of heat recovery ventilation is not usual.
In 35 deutschen und 7 europäischen Büro- und Verwaltungsgebäuden wurden auf Basis von Monitoringkampagnen über mehrere Betriebsjahre Raum- und Außentemperaturwerte in zeitlich hoher Auflösung erfasst und der thermische Raumkomfort im Sommer standardisiert nach der Komfortnorm DIN EN 15251:2007-08 detailliert ausgewertet. Ergänzt wird die Auswertung um Kurzzeitmesskampagnen über zwei sehr warme Wochen im Sommer in unsanierten bzw. teilsanierten Bürogebäuden, errichtet im Zeitraum von 1960 bis 1975. Die untersuchten Gebäude mit ihrem jeweiligen Kühlkonzept lassen sich in sechs Kategorien einteilen: ohne Kühlung, passive, luftgeführte und wassergeführte Kühlung sowie Mixed-mode-Kühlung und Vollklimatisierung. Im Quervergleich aller Gebäude werden die Kühlkonzepte gleichermaßen nach dem thermischen Raumkomfort und thermischen Kühlenergiebezug bewertet. Detaillierte Komfortuntersuchungen nach der Europäischen Komfortnorm DIN EN 15251:2007-08 geben Hinweise auf die Wirksamkeit der eingesetzten Kühltechnologien in den jeweiligen Klimazonen. Daraus lassen sich Handlungsempfehlungen für die Planungspraxis und den Gebäudebetrieb ableiten.
Passive solar elements for both direct and indirect gains, are systems used to maintain a comfortable living environment while saving energy, especially in the building energy retrofit and adaptation process. Sunspaces, thermal mass and glazing area and orientation have been often used in the past to guarantee adequate indoor conditions when mechanical devices were not available. After a period of neglect, nowadays they are again considered as appropriate systems to help face environmental issues in the building sector, and both international and national legislation takes into consideration the possibility of including them in the building planning tools, also providing economic incentives. Their proper design needs dynamic simulation, often difficult to perform and time consuming. Moreover, results generally suffer from several uncertainties, so quasi steady-state procedures are often used in everyday practice with good results, but some corrections are still needed. In this paper, a comparative analysis of different solutions for the construction of verandas in an existing building is presented, following the procedure provided by the slightly modified and improved Standard EN ISO 13790:2008. Advantages and disadvantages of different configurations considering thermal insulation, windows typology and mechanical ventilation systems are discussed and a general intervention strategy is proposed. The aim is to highlight the possibility of using sunspaces in order to increase the efficiency of the existing building stock, considering ease of construction and economic viability.
Energy Performance of Verandas in the Building Retrofit Process (PDF Download Available). Available from: https://www.researchgate.net/publication/303093420_Energy_Performance_of_Verandas_in_the_Building_Retrofit_Process [accessed Jul 5, 2017].
In der Planungs- und Betriebspraxis herrscht im Bereich der Betriebsführung von thermisch aktivierten Bauteilsystemen und insbesondere der thermisch trägen Bauteilaktivierung noch große Unsicherheit. Trotz einer weiten Verbreitung dieser Systeme im Neubau von Nichtwohngebäuden hat sich bis heute keine einheitliche Betriebsführungsstrategie durchgesetzt. Vielmehr kritisieren Bauherren und Nutzer regelmäßig zu hohe bzw. niedrige Raumtemperaturen in den Übergangsjahreszeiten und bei Wetterwechsel sowie generell eine mangelhafte Regelbarkeit. Demgegenüber weisen Monitoringprojekte immer wieder einen hohen thermischen Komfort in diesen Gebäuden nach. Offensichtlich unterscheiden sich hier subjektiv empfundene Behaglichkeit und objektiv gemessener Komfort. Gleichzeitig sind Heiz- und Kühlkonzepte mit Flächentemperierung dann besonders energieeffizient, wenn das Regelkonzept auf deren thermische Trägheit angepasst ist. Eine gute Regelung gewährleistet also einen hohen thermischen Komfort und sorgt für einen möglichst niedrigen Energieeinsatz. Das Rechenverfahren mit Anlagenaufwandszahlen (in Anlehnung an DIN V 18599) bietet eine gute Möglichkeit, Anlagenkonzepte inklusive deren Betriebsführungsstrategie zu bewerten. Damit ist es möglich, eine auf das Gebäude angepasste Betriebsführungsstrategie für die Bauteilaktivierung zu finden und einheitlich zu bewerten.
Membrane distillation (MD) is a thermal separation process which possesses a hydrophobic, microporous
membrane as vapor space. A high potential application for MD is the concentration of hypersaline brines, such as
e.g. reverse osmosis retentate or other saline effluents to be concentrated to a near saturation level with a Zero
Liquid Discharge process chain. In order to further commercialize MD for these target applications, adapted MD
module designs are required along with strategies for the mitigation of membrane wetting phenomena. This
work presents the experimental results of pilot operation with an adapted Air Gap Membrane Distillation
(AGMD) module for hypersaline brine concentration within a range of 0–240 g NaCl /kg solution. Key performance
indicators such as flux, GOR and thermal efficiency are analyzed. A new strategy for wetting mitigation
by active draining of the air gap channel by low pressure air blowing is tested and analyzed. Only small reductions
in flux and GOR of 1.2% and 4.1% respectively, are caused by air sparging into the air gap channel.
Wetting phenomena are significantly reduced by avoiding stagnant distillate in the air gap making the air blower
a seemingly worth- while additional system component.
Techno-economic comparison of membrane distillation and MVC in a zero liquid discharge application
(2018)
Membrane distillation (MD) is a thermally driven membrane process for the separation of vapour from a liquid stream through a hydrophobic, microporous membrane. However, a commercial breakthrough on a large scale has not been achieved so far. Specific developments on MD technology are required to adapt the technology for applications in which its properties can potentially outshine state of the art technologies such as standard evaporation. In order to drive these developments in a focused manner, firstly it must be shown that MD can be economically attractive in comparison to state of the art systems. Thus, this work presents a technological design and economic analysis for AGMD and v-AGMD for application in a zero liquid discharge (ZLD) process chain and compares it to the costs of mechanical vapour compression (MVC) for the same application. The results show that MD can potentially be ~40% more cost effective than MVC for a system capacity of 100 m3/day feed water, and up to ~75% more cost effective if the MD is driven with free waste heat.
Thermisch angetriebene (Adsorptions-)Kältemaschinen können mit einem verhältnismäßig geringen elektrischen Energieaufwand bzw. mit einer hohen elektrischen Leistungszahl Kälte bereitstel-len. Wird die zum Antrieb erforderliche Wärme aus industrieller Abwärme bereitgestellt, ist diese Kältebereitstellung energetisch effizienter als die Kältebereitstellung über eine Kompressionskäl-temaschine. Wird die Wärme jedoch in Kraft-Wärme-Kopplung bereitgestellt, ist die primärenergetische Bewertung sowohl von mehreren Teilwirkungsgraden als auch den Primärenergiefaktoren für den eingesetzten Brennstoff und die erzeugte bzw. bezogene elektrische Energie abhängig. Eine umfangreiche Messkampagne im Sommer 2018 liefert unter realitätsnahen Randbedingungen in einer Labor umgebung detaillierte Energiekennzahlen für einen typischen Tagesgang des Kältebedarfs. Damit gelingt es, Teilenergiekennwerte für die Planungspraxis abzuleiten und das Gesamtsystem energetisch mit einer konventionellen Kompressionskältemaschine zu vergleichen.
Dieser technische Bericht stellt die Verwendung der Zuwendung und der erzielten Ergebnisse im Einzelnen dar. Die Gegenüberstellung mit den vorgegebenen Zielen erfolgt anhand der Beschreibung des Arbeitspakete. Die Verwendung der Zuwendung und Gegenüberstellung mit den vorgegebenen Zielen wird anhand der Arbeitspakete beschrieben, um den Abgleich zwischen Planung und durchgeführten Arbeiten unmittelbar darstellen zu können.
In this article we outline the model development planned within the joint projectModel-based city planningand application in climate change (MOSAIK). The MOSAIK project is funded by the German FederalMinistry of Education and Research (BMBF) within the frameworkUrban Climate Under Change ([UC]2)since 2016. The aim of MOSAIK is to develop a highly-efficient, modern, and high-resolution urban climatemodel that allows to be applied for building-resolving simulations of large cities such as Berlin (Germany).The new urban climate model will be based on the well-established large-eddy simulation code PALM, whichalready has numerous features related to this goal, such as an option for prescribing Cartesian obstacles. Inthis article we will outline those components that will be added or modified in the framework of MOSAIK.Moreover, we will discuss the everlasting issue of acquisition of suitable geographical information as inputdata and the underlying requirements from the model's perspective.
Die fluktuierende Verfügbarkeit regenerativer Energiequellen stellt eine Herausforderung bei der Planung und Auslegung regenerativer Gebäudeenergiesysteme dar. Die in einem System benötigten Speicherkapazitäten hängen dabei sowohl von der eingesetzten Regelungsstrategie als auch von den temperaturabhängigen Wirkungsgraden der Anlagenkomponenten ab. Genauere Einblicke in das Betriebsverhalten eines Gesamtsystems können dynamische Simulationen liefern, die eine Analyse der Systemtemperaturen und von Teilenergiekennwerten ermöglichen.
Mit der Messung des Wärme- und Kälteverbrauchs im Labor gelingt es, sowohl thermisch träge als auch agile Flächentemperiersysteme unter praxisnahen, dynamischen Bedingungen messtechnisch zu bewerten. Werden Nutzwärme- und Nutzkältebedarf berechnet und ins Verhältnis zu den gemessenen Verbräuchen gesetzt, können die Aufwandzahlen für die Nutzenübergabe ece für verschiedene Flächentemperiersysteme und in Kombinationen mit anderen Übergabesystemen unter verschiedenen Nutzungsbedingungen und für unterschiedliche Betriebsführungsstrategien bestimmt werden. Damit stehen Aufwandszahlen auf Basis kalorischer Messungen zur Verfügung, die je nach Aufgabenstellung entweder produkt- oder objektbezogen in der Planung komplexer Energiekonzepte verwendet werden können und die tatsächlichen Aufwandszahlen eh, ce für den Heizfall bzw. ec, ce für den Kühlfall genauer als Literaturwerte bzw. projektbezogen beschreiben
Microscale trigeneration systems are highly flexible in their operation and thus offer the technical possibility for peak load shifting in building demand side management. However to harness their potential modern control methods such as model predictive control must be implemented for their optimal scheduling. In literature the need for experimental investigation of microscale trigeneration systems to identify typical characteristics of the components and their interactions has been identified. On a real-life setup control specific information of the components is collected and lessons learnt during commissioning of the equipment is shared. The data is analysed to draw the vital characteristics of the system and it will be used for creating models of the components that can be utilised for optimal control.
The transformation of the building energy sector to a highly efficient, clean, decentralised and intelligent system requires innovative technologies like microscale trigeneration and thermally activated building structures (TABS) to pave the way ahead. The combination of such technologies however presents a scientific and engineering challenge. Scientific challenge in terms of developing optimal thermo-electric load management strategies based on overall energy system analysis and an engineering challenge in terms of implementing these strategies through process planning and control. Initial literature research has pointed out the need for a multiperspective analysis in a real life laboratory environment. To this effect an investigation is proposed wherein an analytical model of a microscale trigeneration system integrated with TABS will be developed and compared with a real life test-rig corresponding to building management systems. Data from the experimental analysis will be used to develop control algorithms using model predictive control for achieving the thermal comfort of occupants in the most energy efficient and grid reactive manner. The scope of this work encompasses adsorption cooling based microscale trigeneration systems and their deployment in residential and light commercial buildings.