Refine
Year of publication
Document Type
- Article (reviewed) (35)
- Conference Proceeding (11)
- Article (unreviewed) (6)
- Book (2)
- Report (2)
- Part of a Book (1)
- Contribution to a Periodical (1)
Conference Type
- Konferenzartikel (11)
Is part of the Bibliography
- yes (58)
Keywords
- Bauteil (3)
- Bürohaus (3)
- Energieeffizienz (3)
- Klimatechnik (3)
- Raumklima (3)
- Energietechnik (2)
- Energieversorgung (2)
- Gebäude (2)
- Haustechnik (2)
- Thermik (2)
Institute
Open Access
- Closed Access (23)
- Open Access (22)
- Closed (8)
- Gold (3)
- Bronze (2)
- Diamond (2)
- Grün (1)
Viele Gebäude werden mit Umweltenergie (z.B. über Nachtlüftung oder über Flächentemperiersysteme mit reversibler Wärmepumpe) gekühlt. In diesen Gebäuden ist die Kühlleistung bauphysikalisch und anlagentechnisch begrenzt und folglich kann der thermische Komfort im Sommer nicht zu jedem Zeitpunkt gewährleistet werden. Dieses Gebäudeverhalten wird zwar bereits in der Planung berücksichtigt, dennoch stellt sich in der Praxis oft die Frage, ob die Gebäude im Gebäudebetrieb tatsächlich die in der Planung formulierten Anforderungen im Hinblick auf das sommerliche Temperaturverhalten einhalten. Eine messtechnische Untersuchung über einen Zeitraum von ca. 2 Wochen mit mobiler Messtechnik bietet hier eine Möglichkeit, objektive Daten bereitzustellen. Dazu wird neben dem thermischen Raumklima auch das Mikroklima am Gebäude erfasst. Wegen des hoch-dynamischen Temperaturverhaltens bietet jedoch erst eine modellbasierte Analyse einen verlässlichen Vergleich zwischen Planungswerten und tatsächlichem Gebäudebetrieb.
Microscale trigeneration systems are highly flexible in their operation and thus offer the technical possibility for peak load shifting in building demand side management. However to harness their potential modern control methods such as model predictive control must be implemented for their optimal scheduling. In literature the need for experimental investigation of microscale trigeneration systems to identify typical characteristics of the components and their interactions has been identified. On a real-life setup control specific information of the components is collected and lessons learnt during commissioning of the equipment is shared. The data is analysed to draw the vital characteristics of the system and it will be used for creating models of the components that can be utilised for optimal control.
Thermisch angetriebene (Adsorptions-)Kältemaschinen können mit einem verhältnismäßig geringen elektrischen Energieaufwand bzw. mit einer hohen elektrischen Leistungszahl Kälte bereitstel-len. Wird die zum Antrieb erforderliche Wärme aus industrieller Abwärme bereitgestellt, ist diese Kältebereitstellung energetisch effizienter als die Kältebereitstellung über eine Kompressionskäl-temaschine. Wird die Wärme jedoch in Kraft-Wärme-Kopplung bereitgestellt, ist die primärenergetische Bewertung sowohl von mehreren Teilwirkungsgraden als auch den Primärenergiefaktoren für den eingesetzten Brennstoff und die erzeugte bzw. bezogene elektrische Energie abhängig. Eine umfangreiche Messkampagne im Sommer 2018 liefert unter realitätsnahen Randbedingungen in einer Labor umgebung detaillierte Energiekennzahlen für einen typischen Tagesgang des Kältebedarfs. Damit gelingt es, Teilenergiekennwerte für die Planungspraxis abzuleiten und das Gesamtsystem energetisch mit einer konventionellen Kompressionskältemaschine zu vergleichen.
Vulnerabilitätsanalyse "Hitzestress und menschliche Gesundheit" am Beispiel der Stadt Reutlingen
(2020)
In diesem Modellprojekt wird das Schutzgut "Menschliche Gesundheit" insbesondere unter dem Gesichtspunkt der im Rahmen des globalen Klimawandels zu erwartenden Überhitzung der Städte ("städtische Hitzeinseln") betrachtet.
In der Großstadt Reutlingen ("Tor zur Schwäbischen Alb/112.500 EW) mit ihrer Pfortenlage am Rande der Schwäbischen Alb und der Höhenlage (400-800 m) sowie der Bebauungsdichte werden bis 2050 bzw. 2100 (Strategie zur Anpassung an den Klimawandel Baden-Württemberg - Vulnerabilitäten und Klimaanpassungsmaßnahmen, 2015) die massivsten Auswirkungen bezüglich Aufenthaltsbehaglichkeit und Gesundheitsfolgen in Reutlingen erwartet.
Der Untersuchungsschwerpunkt liegt im Wirkungsbereich Mensch-Siedlung, d.h. in der Betrachtung von empfindlichen Bevölkerungspopulationen (z.B. ältere Menschen) und hitzeempfindlichen Nutzungsstrukturen (z.B. verdichteten städtischen Siedlungsflächen). Insbesondere die bereits in der abgeschlossenen Gesamtstädtischen Klimaanalyse ermittelten überwärmten Areale ("hot spots") und die im Rahmen des Klimawandels für 2020-2050 zukünftig zu erwartende Hitzestressbelastung bei empfindlichen Bevölkerungsgruppen in Stadtquartieren und Funktionsbauten, stehen im Zenit der Untersuchung.
Dabei wird über das Kriterium Empfindlichkeit (Basis sind z.B. quartierbezogene Datenstrukturen von Älteren, Einrichtungen wie Krankenhäuser, Kinderpflegeeinrichtungen, Alten- Behinderten- und Pflegeheime) die zukünftige Hitzestress-Belastung für Reutlingen erarbeitet. Weiteres wichtiges Kriterium ist die Betroffenheit nach Standortsituation (Höhenlage, Durchlüftungsverhältnisse, Bioklima/PMV = Maß für die bioklimatische Behaglichkeit) und die Anzahl hitzestressgeplagter Menschen (Kinder, Kranke, Ältere). Insbesondere für das Szenarium 2020 bis 2050 (s. Strategie zur Anpassung an den Klimawandel Baden-Württemberg - Vulnerabilitäten und Klimaanpassungsmaßnahmen, 2015) werden objekt- bzw. einrichtungsbezogen (z.B. Altenpflegeeinrichtungen) sowie quartiersspezifisch (Stadtstrukturtypen) die Auswirkungen bzw. Verwundbarkeiten erarbeitet. Dieser objektspezifische (bauklimatische) Ansatz, die innovative Indikatorenbildung zur situativen kommunalen Anwendbarkeit auch über Reutlingen hinaus sowie der partizipative Ansatz mit Nichtregierungsorganisationen (NGO´s) begründet den Modellcharakter ("Reutlinger Modell") dieser Untersuchung. Das Modellprojekt bildet das zweite Modul in einem dreiteiligen Klimaanpassungskonzept für die Stadt Reutlingen.
The contribution of the RoofKIT student team to the SDE 21/22 competition is the extension of an existing café in Wuppertal, Germany, to create new functions and living space for the building with simultaneous energetic upgrading. A demonstration unit is built representing a small cut-out of this extension. The developed energy concept was thoroughly simulated by the student team in seminars using Modelica. The system uses mainly solar energy via PVT collectors as the heat source for a brine-water heat pump (space heating and hot water). Energy storage (thermal and electrical) is installed to decouple generation and consumption. Simulation results confirm that carbon neutrality is achieved for the building operation, consuming and generating around 60 kWh/m2a.
Energy consumption for cooling is growing dramatically. In the last years, electricity peak consumption grew significantly, switching from winter to summer in many EU countries. This is endangering the stability of electricity grids. This article outlines a comprehensive analysis of an office building performances in terms of energy consumption and thermal comfort (in accordance with static – ISO 7730:2005 – and adaptive thermal comfort criteria – EN 15251:2007 –) related to different cooling concepts in six different European climate zones. The work is based on a series of dynamic simulations carried out in the Trnsys 17 environment for a typical office building. The simulation study was accomplished for five cooling technologies: natural ventilation (NV), mechanical night ventilation (MV), fan-coils (FC), suspended ceiling panels (SCP), and concrete core conditioning (CCC) applied in Stockholm, Hamburg, Stuttgart, Milan, Rome, and Palermo. Under this premise, the authors propose a methodology for the evaluation of the cooling concepts taking into account both, thermal comfort and energy consumption.
In 35 deutschen und 7 europäischen Büro- und Verwaltungsgebäuden wurden auf Basis von Monitoringkampagnen über mehrere Betriebsjahre Raum- und Außentemperaturwerte in zeitlich hoher Auflösung erfasst und der thermische Raumkomfort im Sommer standardisiert nach der Komfortnorm DIN EN 15251:2007-08 detailliert ausgewertet. Ergänzt wird die Auswertung um Kurzzeitmesskampagnen über zwei sehr warme Wochen im Sommer in unsanierten bzw. teilsanierten Bürogebäuden, errichtet im Zeitraum von 1960 bis 1975. Die untersuchten Gebäude mit ihrem jeweiligen Kühlkonzept lassen sich in sechs Kategorien einteilen: ohne Kühlung, passive, luftgeführte und wassergeführte Kühlung sowie Mixed-mode-Kühlung und Vollklimatisierung. Im Quervergleich aller Gebäude werden die Kühlkonzepte gleichermaßen nach dem thermischen Raumkomfort und thermischen Kühlenergiebezug bewertet. Detaillierte Komfortuntersuchungen nach der Europäischen Komfortnorm DIN EN 15251:2007-08 geben Hinweise auf die Wirksamkeit der eingesetzten Kühltechnologien in den jeweiligen Klimazonen. Daraus lassen sich Handlungsempfehlungen für die Planungspraxis und den Gebäudebetrieb ableiten.
There is a strong interaction between the urban atmospheric canopy layer and the building energy balance. The urban atmospheric conditions affect the heat transfer through exterior walls, the long-wave heat transfer between the building surfaces and the surroundings, the short-wave solar heat gains, and the heat transport by ventilation. Considering also the internal heat gains and the heat capacity of the building structure, the energy demand for heating and cooling and the indoor thermal environment can be calculated based on the urban microclimatic conditions. According to the building energy concept, the energy demand results in an (anthropogenic) waste heat; this is directly transferred to the urban environment. Furthermore, the indoor temperature is re-coupled via the building envelope to the urban environment and affects indirectly the urban microclimate with a temporally lagged and damped temperature fluctuation. We developed a holistic building model for the combined calculation of indoor climate and energy demand based on an analytic solution of Fourier's equation and implemented this model into the PALM model.
To improve the building’s energy efficiency many parameters should be assessed considering the building envelope, energy loads, occupation, and HVAC systems. Fenestration is among the most important variables impacting residential building indoor temperatures. So, it is crucial to use the most optimal energy-efficient window glazing in buildings to reduce energy consumption and at the same time provide visual daylight comfort and thermal comfort. Many studies have focused on the improvement of building energy efficiency focusing on the building envelope or the heating, ventilation, and cooling systems. But just a few studies have focused on studying the effect of glazing on building energy consumption. Thus, this paper aims to study the influence of different glazing types on the building’s heating and cooling energy consumption. A real case study building located under a semi-arid climate was used. The building energy model has been conducted using the OpenStudio simulation engine. Building indoor temperature was calibrated using ASHRAE’s statistical indices. Then a comparative analysis was conducted using seven different types of windows including single, double, and triple glazing filled with air and argon. Tripleglazed and double-glazed windows with argon space offer 37% and 32% of annual energy savings. It should be stressed that the methodology developed in this paper could be useful for further studies to improve building energy efficiency using optimal window glazing.