Refine
Year of publication
Document Type
- Article (reviewed) (30)
- Conference Proceeding (10)
- Article (unreviewed) (6)
- Book (2)
- Report (2)
- Part of a Book (1)
- Contribution to a Periodical (1)
Conference Type
- Konferenzartikel (10)
Is part of the Bibliography
- yes (52)
Keywords
- Bauteil (3)
- Bürohaus (3)
- Energieeffizienz (3)
- Klimatechnik (3)
- Raumklima (3)
- Energietechnik (2)
- Energieversorgung (2)
- Gebäude (2)
- Haustechnik (2)
- Aktivierung (1)
Institute
Open Access
- Closed Access (20)
- Open Access (18)
- Closed (6)
- Diamond (2)
- Gold (2)
- Bronze (1)
Experimental Investigation of the Air Exchange Effectiveness of Push-Pull Ventilation Devices
(2020)
The increasing installation numbers of ventilation units in residential buildings are driven by legal objectives to improve their energy efficiency. The dimensioning of a ventilation system for nearly zero energy buildings is usually based on the air flow rate desired by the clients or requested by technical regulations. However, this does not necessarily lead to a system actually able to renew the air volume of the living space effectively. In recent years decentralised systems with an alternating operation mode and fairly good energy efficiencies entered the market and following question was raised: “Does this operation mode allow an efficient air renewal?” This question can be answered experimentally by performing a tracer gas analysis. In the presented study, a total of 15 preliminary tests are carried out in a climatic chamber representing a single room equipped with two push-pull devices. The tests include summer, winter and isothermal supply air conditions since this parameter variation is missing till now for push-pull devices. Further investigations are dedicated to the effect of thermal convection due to human heat dissipation on the room air flow. In dependence on these boundary conditions, the determined air exchange efficiency varies, lagging behind the expected range 0.5 < εa < 1 in almost all cases, indicating insufficient air exchange including short-circuiting. Local air exchange values suggest inhomogeneous air renewal depending on the distance to the indoor apertures as well as the temperature gradients between in- and outdoor. The tested measurement set-up is applicable for field measurements.
In this article we outline the model development planned within the joint projectModel-based city planningand application in climate change (MOSAIK). The MOSAIK project is funded by the German FederalMinistry of Education and Research (BMBF) within the frameworkUrban Climate Under Change ([UC]2)since 2016. The aim of MOSAIK is to develop a highly-efficient, modern, and high-resolution urban climatemodel that allows to be applied for building-resolving simulations of large cities such as Berlin (Germany).The new urban climate model will be based on the well-established large-eddy simulation code PALM, whichalready has numerous features related to this goal, such as an option for prescribing Cartesian obstacles. Inthis article we will outline those components that will be added or modified in the framework of MOSAIK.Moreover, we will discuss the everlasting issue of acquisition of suitable geographical information as inputdata and the underlying requirements from the model's perspective.
Passive solar elements for both direct and indirect gains, are systems used to maintain a comfortable living environment while saving energy, especially in the building energy retrofit and adaptation process. Sunspaces, thermal mass and glazing area and orientation have been often used in the past to guarantee adequate indoor conditions when mechanical devices were not available. After a period of neglect, nowadays they are again considered as appropriate systems to help face environmental issues in the building sector, and both international and national legislation takes into consideration the possibility of including them in the building planning tools, also providing economic incentives. Their proper design needs dynamic simulation, often difficult to perform and time consuming. Moreover, results generally suffer from several uncertainties, so quasi steady-state procedures are often used in everyday practice with good results, but some corrections are still needed. In this paper, a comparative analysis of different solutions for the construction of verandas in an existing building is presented, following the procedure provided by the slightly modified and improved Standard EN ISO 13790:2008. Advantages and disadvantages of different configurations considering thermal insulation, windows typology and mechanical ventilation systems are discussed and a general intervention strategy is proposed. The aim is to highlight the possibility of using sunspaces in order to increase the efficiency of the existing building stock, considering ease of construction and economic viability.
Energy Performance of Verandas in the Building Retrofit Process (PDF Download Available). Available from: https://www.researchgate.net/publication/303093420_Energy_Performance_of_Verandas_in_the_Building_Retrofit_Process [accessed Jul 5, 2017].
Vulnerabilitätsanalyse "Hitzestress und menschliche Gesundheit" am Beispiel der Stadt Reutlingen
(2020)
In diesem Modellprojekt wird das Schutzgut "Menschliche Gesundheit" insbesondere unter dem Gesichtspunkt der im Rahmen des globalen Klimawandels zu erwartenden Überhitzung der Städte ("städtische Hitzeinseln") betrachtet.
In der Großstadt Reutlingen ("Tor zur Schwäbischen Alb/112.500 EW) mit ihrer Pfortenlage am Rande der Schwäbischen Alb und der Höhenlage (400-800 m) sowie der Bebauungsdichte werden bis 2050 bzw. 2100 (Strategie zur Anpassung an den Klimawandel Baden-Württemberg - Vulnerabilitäten und Klimaanpassungsmaßnahmen, 2015) die massivsten Auswirkungen bezüglich Aufenthaltsbehaglichkeit und Gesundheitsfolgen in Reutlingen erwartet.
Der Untersuchungsschwerpunkt liegt im Wirkungsbereich Mensch-Siedlung, d.h. in der Betrachtung von empfindlichen Bevölkerungspopulationen (z.B. ältere Menschen) und hitzeempfindlichen Nutzungsstrukturen (z.B. verdichteten städtischen Siedlungsflächen). Insbesondere die bereits in der abgeschlossenen Gesamtstädtischen Klimaanalyse ermittelten überwärmten Areale ("hot spots") und die im Rahmen des Klimawandels für 2020-2050 zukünftig zu erwartende Hitzestressbelastung bei empfindlichen Bevölkerungsgruppen in Stadtquartieren und Funktionsbauten, stehen im Zenit der Untersuchung.
Dabei wird über das Kriterium Empfindlichkeit (Basis sind z.B. quartierbezogene Datenstrukturen von Älteren, Einrichtungen wie Krankenhäuser, Kinderpflegeeinrichtungen, Alten- Behinderten- und Pflegeheime) die zukünftige Hitzestress-Belastung für Reutlingen erarbeitet. Weiteres wichtiges Kriterium ist die Betroffenheit nach Standortsituation (Höhenlage, Durchlüftungsverhältnisse, Bioklima/PMV = Maß für die bioklimatische Behaglichkeit) und die Anzahl hitzestressgeplagter Menschen (Kinder, Kranke, Ältere). Insbesondere für das Szenarium 2020 bis 2050 (s. Strategie zur Anpassung an den Klimawandel Baden-Württemberg - Vulnerabilitäten und Klimaanpassungsmaßnahmen, 2015) werden objekt- bzw. einrichtungsbezogen (z.B. Altenpflegeeinrichtungen) sowie quartiersspezifisch (Stadtstrukturtypen) die Auswirkungen bzw. Verwundbarkeiten erarbeitet. Dieser objektspezifische (bauklimatische) Ansatz, die innovative Indikatorenbildung zur situativen kommunalen Anwendbarkeit auch über Reutlingen hinaus sowie der partizipative Ansatz mit Nichtregierungsorganisationen (NGO´s) begründet den Modellcharakter ("Reutlinger Modell") dieser Untersuchung. Das Modellprojekt bildet das zweite Modul in einem dreiteiligen Klimaanpassungskonzept für die Stadt Reutlingen.
Mit längerfristigen Nutzerbefragungen in zwei unmittelbar benachbarten Bürogebäuden in Freiburg wurden das Temperaturempfinden der Nutzer und deren Zufriedenheit mit dem thermischen Raumkomfort zweimal täglich erfasst. Ein Bürogebäude wird im Sommer mit einem maschinellen Nachtlüftungskonzept konditioniert und das zweite verfügt über eine Betonkerntemperierung und eine Zu‐ und Abluftanlage. Auf Basis der vorhandenen Daten aus der Erhebung wurde mit Hilfe von Regressionsanalysen ein Modell zur Vorhersage der Komforttemperatur berechnet und mit den Modellen in DIN EN 15251 verglichen.
The contribution of the RoofKIT student team to the SDE 21/22 competition is the extension of an existing café in Wuppertal, Germany, to create new functions and living space for the building with simultaneous energetic upgrading. A demonstration unit is built representing a small cut-out of this extension. The developed energy concept was thoroughly simulated by the student team in seminars using Modelica. The system uses mainly solar energy via PVT collectors as the heat source for a brine-water heat pump (space heating and hot water). Energy storage (thermal and electrical) is installed to decouple generation and consumption. Simulation results confirm that carbon neutrality is achieved for the building operation, consuming and generating around 60 kWh/m2a.
Techno-economic comparison of membrane distillation and MVC in a zero liquid discharge application
(2018)
Membrane distillation (MD) is a thermally driven membrane process for the separation of vapour from a liquid stream through a hydrophobic, microporous membrane. However, a commercial breakthrough on a large scale has not been achieved so far. Specific developments on MD technology are required to adapt the technology for applications in which its properties can potentially outshine state of the art technologies such as standard evaporation. In order to drive these developments in a focused manner, firstly it must be shown that MD can be economically attractive in comparison to state of the art systems. Thus, this work presents a technological design and economic analysis for AGMD and v-AGMD for application in a zero liquid discharge (ZLD) process chain and compares it to the costs of mechanical vapour compression (MVC) for the same application. The results show that MD can potentially be ~40% more cost effective than MVC for a system capacity of 100 m3/day feed water, and up to ~75% more cost effective if the MD is driven with free waste heat.
This paper presents a framework for numerical building validation enhancement based on detailed building specifications from in-situ measurements and evidence-based validation assessment undertaken on a detached sustainable lightweight building in a semi-arid climate. The validation process has been undergone in a set of controlled experiments – a free-float period, and steady-state internal temperatures. The validation was conducted for a complete year with a 1-min time step for the hourly indoor temperature and the variable refrigerant flow (VRF) energy consumption. The initial baseline model was improved by three series of validation steps per three different field measurements including thermal transmittance, glazing thermal and optical properties, and airtightness. Then, the accurate and validated model was used for building energy efficiency assessment in 12 regions of Morocco. This study aims to assess the effect of accurate building characteristics values on the numerical model enhancement. The initial CV(RMSE) and NMBE have improved respectively from 14.58 % and −11.23 %–7.85 % and 1.86 % for the indoor temperature. Besides, from 31.17 % to 14.37 %–20.57 % and 9.77 % for energy consumption. The findings demonstrate that the lightweight construction with the use of a variable refrigerant flow system could be energy efficient in the southern regions of Morocco.
The variable refrigerant flow system is one of the best heating, ventilation, and air conditioning systems (HVAC) thanks to its ability to provide thermal comfort inside buildings. But, at the same time, these systems are considered one of the most energy-consuming systems in the building sector. Thus, it is crucial to well size the system according to the building’s cooling and heating needs and the indoor temperature fluctuations. Although many researchers have studied the optimization of the building energy performance considering heating or cooling needs, using air handling units, radiant floor heating, and direct expansion valves, few studies have considered the use of multi-objective optimization using only the thermostat setpoints of VRF systems for both cooling and heating needs. Thus, the main aim of this study is to conduct a sensitivity analysis and a multi-objective optimization strategy for a residential building containing a variable refrigerant flow system, to evaluate the effect of the building performance on energy consumption and improve the building energy efficiency. The numerical model was based on the EnergyPlus, jEPlus, and jEPlus+EA simulation engines. The approach used in this paper has allowed us to reach significant quantitative energy saving by varying the cooling and heating setpoints and scheduling scenarios. It should be stressed that this approach could be applied to several HVAC systems to reduce energy-building consumption.
A strong heat load in buildings and cities during the summer is not a new phenomenon. However, prolonged heat waves and increasing urbanization are intensifying the heat island effect in our cities; hence, the heat exposure in residential buildings. The thermophysiological load in the interior and exterior environments can be reduced in the medium and long term, through urban planning and building physics measures. In the short term, an increasingly vulnerable population must be effectively informed of an impending heat wave. Building simulation models can be favorably used to evaluate indoor heat stress. This study presents a generic simulation model, developed from monitoring data in urban multi-unit residential buildings during a summer period and using statistical methods. The model determines both the average room temperature and its deviations and, thus, consists of three sub-models: cool, average, and warm building types. The simulation model is based on the same mathematical algorithm, whereas each building type is described by a specific data set, concerning its building physical parameters and user behavior, respectively. The generic building model may be used in urban climate analyses with many individual buildings distributed across the city or in heat–health warning systems, with different building and user types distributed across a region. An urban climate analysis (with weather data from a database) may evaluate local differences in urban and indoor climate, whereas heat–health warning systems (driven by a weather forecast) obtain additional information on indoor heat stress and its expected deviations.