Refine
Year of publication
Document Type
- Article (reviewed) (25)
- Conference Proceeding (7)
- Article (unreviewed) (5)
- Book (2)
- Contribution to a Periodical (2)
- Part of a Book (1)
- Report (1)
Is part of the Bibliography
- yes (43)
Keywords
- Bauteil (3)
- Bürohaus (3)
- Klimatechnik (3)
- Raumklima (3)
- Gebäude (2)
- Haustechnik (2)
- Aktivierung (1)
- Anlagenaufwandszahl (1)
- Bauteilaktivierung (1)
- Belüftung (1)
Institute
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (41)
- INES - Institut für nachhaltige Energiesysteme (bis 18.11.2021: Institut für Energiesystemtechnik) (33)
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (2)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (1)
Open Access
- Closed Access (17)
- Open Access (9)
- Closed (1)
- Diamond (1)
Die fluktuierende Verfügbarkeit regenerativer Energiequellen stellt eine Herausforderung bei der Planung und Auslegung regenerativer Gebäudeenergiesysteme dar. Die in einem System benötigten Speicherkapazitäten hängen dabei sowohl von der eingesetzten Regelungsstrategie als auch von den temperaturabhängigen Wirkungsgraden der Anlagenkomponenten ab. Genauere Einblicke in das Betriebsverhalten eines Gesamtsystems können dynamische Simulationen liefern, die eine Analyse der Systemtemperaturen und von Teilenergiekennwerten ermöglichen.
Techno-economic comparison of membrane distillation and MVC in a zero liquid discharge application
(2018)
Membrane distillation (MD) is a thermally driven membrane process for the separation of vapour from a liquid stream through a hydrophobic, microporous membrane. However, a commercial breakthrough on a large scale has not been achieved so far. Specific developments on MD technology are required to adapt the technology for applications in which its properties can potentially outshine state of the art technologies such as standard evaporation. In order to drive these developments in a focused manner, firstly it must be shown that MD can be economically attractive in comparison to state of the art systems. Thus, this work presents a technological design and economic analysis for AGMD and v-AGMD for application in a zero liquid discharge (ZLD) process chain and compares it to the costs of mechanical vapour compression (MVC) for the same application. The results show that MD can potentially be ~40% more cost effective than MVC for a system capacity of 100 m3/day feed water, and up to ~75% more cost effective if the MD is driven with free waste heat.
Cooling towers or recoolers are one of the major consumers of electricity in a HVAC plant. The implementation and analysis of advanced control methods in a practical application and its comparison with conventional controllers is necessary to establish a framework for their feasibility especially in the field of decentralised energy systems. A standard industrial controller, a PID and a model based controller were developed and tested in an experimental set-up using market-ready components. The characteristics of these controllers such as settling time, control difference, and frequency of control actions are compared based on the monitoring data. Modern controllers demonstrated clear advantages in terms of energy savings and higher accuracy and a model based controller was easier to set-up than a PID.
The contribution of the RoofKIT student team to the SDE 21/22 competition is the extension of an existing café in Wuppertal, Germany, to create new functions and living space for the building with simultaneous energetic upgrading. A demonstration unit is built representing a small cut-out of this extension. The developed energy concept was thoroughly simulated by the student team in seminars using Modelica. The system uses mainly solar energy via PVT collectors as the heat source for a brine-water heat pump (space heating and hot water). Energy storage (thermal and electrical) is installed to decouple generation and consumption. Simulation results confirm that carbon neutrality is achieved for the building operation, consuming and generating around 60 kWh/m2a.
Drawing off the technical flexibility of building polygeneration systems to support a rapidly expanding renewable electricity grid requires the application of advanced controllers like model predictive control (MPC) that can handle multiple inputs and outputs, uncertainties in forecast data, and plant constraints amongst other features. In this original work, an economic-MPC-based optimal scheduling of a real-world building energy system is demonstrated and its performance is evaluated against a conventional controller. The demonstration includes the steps to integrate an optimisation-based supervisory controller into a standard building automation and control system with off-the-shelf HVAC components and usage of state-of-art algorithms for solving complex nonlinear mixed integer optimal control problems. With the MPC, quantitative benefits in terms of 6–12% demand-cost savings and qualitative benefits in terms of better controller adaptability and hardware-friendly operation are identified. Further research potential for improving the MPC framework in terms of field-level stability, minimising constraint violations, and inter-system communication for its deployment in a prosumer-network is also identified.
It is considered necessary to implement advanced controllers such as model predictive control (MPC) to utilize the technical flexibility of a building polygeneration system to support the rapidly expanding renewable electricity grid. These can handle multiple inputs and outputs, uncertainties in forecast data, and plant constraints, amongst other features. One of the main issues identified in the literature regarding deploying these controllers is the lack of experimental demonstrations using standard components and communication protocols. In this original work, the economic-MPC-based optimal scheduling of a real-world heat pump-based building energy plant is demonstrated, and its performance is evaluated against two conventional controllers. The demonstration includes the steps to integrate an optimization-based supervisory controller into a typical building automation and control system with off-the-shelf HVAC components and usage of state-of-art algorithms to solve a mixed integer quadratic problem. Technological benefits in terms of fewer constraint violations and a hardware-friendly operation with MPC were identified. Additionally, a strong dependency of the economic benefits on the type of load profile, system design and controller parameters was also identified. Future work for the quantification of these benefits, the application of machine learning algorithms, and the study of forecast deviations is also proposed.
The current methods used to assess the energy performance of ventilation devices do not consider all the aspects necessary for a comprehensive evaluation of decentralised ventilation concepts and can only be partially adapted to their needs. In order to improve the energy evaluation and to ensure the comparability of different systems, a calorimetric method was developed and implemented in test facilities for the evaluation of two decentralised devices: one equipped with a recuperative counter flow heat exchanger and one with a regenerative heat exchanger. This method, based on direct measurements of the heating load in an insulated test room, includes the effect of the electrical consumption of the fans on the energy performance of the ventilation devices. The calorimetric evaluation method was extended to a seasonal evaluation on the basis of a heating-degree-day method implemented for a warm, a cool and a moderate location in Europe: Athens, Strasbourg and Copenhagen. All the results are above 50% efficiency for both devices, even in Athens where the use of heat recovery ventilation is not usual.
Mit der Messung des Wärme- und Kälteverbrauchs im Labor gelingt es, sowohl thermisch träge als auch agile Flächentemperiersysteme unter praxisnahen, dynamischen Bedingungen messtechnisch zu bewerten. Werden Nutzwärme- und Nutzkältebedarf berechnet und ins Verhältnis zu den gemessenen Verbräuchen gesetzt, können die Aufwandzahlen für die Nutzenübergabe ece für verschiedene Flächentemperiersysteme und in Kombinationen mit anderen Übergabesystemen unter verschiedenen Nutzungsbedingungen und für unterschiedliche Betriebsführungsstrategien bestimmt werden. Damit stehen Aufwandszahlen auf Basis kalorischer Messungen zur Verfügung, die je nach Aufgabenstellung entweder produkt- oder objektbezogen in der Planung komplexer Energiekonzepte verwendet werden können und die tatsächlichen Aufwandszahlen eh, ce für den Heizfall bzw. ec, ce für den Kühlfall genauer als Literaturwerte bzw. projektbezogen beschreiben