Refine
Document Type
- Conference Proceeding (13)
- Article (reviewed) (1)
- Contribution to a Periodical (1)
- Report (1)
Conference Type
- Konferenzartikel (13)
Is part of the Bibliography
- yes (16)
Keywords
- LPWAN (3)
- Internet of Things (2)
- 5G (1)
- 5G mobile communication (1)
- 6LoWPAN (1)
- EAP-TLS (1)
- Eingebettetes System (1)
- IoT (1)
- Long Term Evolution (1)
- Mobilkommunikation (1)
Institute
Open Access
- Closed Access (9)
- Open Access (4)
- Closed (3)
- Gold (2)
- Bronze (1)
One of the main requirements of spatially distributed Internet of Things (IoT) solutions is to have networks with wider coverage to connect many low-power devices. Low-Power Wide-Area Networks (LPWAN) and Cellular IoT(cIOT) networks are promising candidates in this space. LPWAN approaches are based on enhanced physical layer (PHY) implementations to achieve long range such as LoRaWAN, SigFox, MIOTY. Narrowband versions of cellular network offer reduced bandwidth and, simplified node and network management mechanisms, such as Narrow Band IoT (NB-IoT) and Long-Term Evolution for Machines (LTE-M). Since the underlying use cases come with various requirements it is essential to perform a comparative analysis of competing technologies. This article provides systematic performance measurement and comparison of LPWAN and NB-IoT technologies in a unified testbed, also discusses the necessity of future fifth generation (5G) LPWAN solutions.
Wireless communication technologies play a major role to enable megatrends like Internet of Things (IoT) and Industry 4.0. The Narrowband Wireless WAN (NBWWAN) introduced to meet the long range and low power requirements of spatially distributed wireless communication use cases. These networks introduce additional challenges in testing because the network topology and RF characteristics become particularly complex and thus a multitude of different scenarios must be tested. This paper describes the infrastructure for automated testing of radio communication and for systematic measurements of the network performance of NBWWAN.
Die industrielle Kommunikation war früher von relativ eingeschränkten, geschlossenen Feldbussystemen geprägt. Mit der zunehmenden Öffnung von Automatisierungsnetzen durch die horizontale und vertikale Integration in Produktionsanlagen entstehen gefährliche Angriffsflächen, die zum Diebstahl von Produktionsgeheimnissen, der Manipulation oder dem kompletten Lahmlegen der Produktionsprozesse führen können. Hieraus ergeben sich grundlegend neue Anforderung an die Datensicherheit, denen mit innovativen Lösungsansätzen begegnet werden muss.
Ziel des Forschungsvorhabens „SecureField“ war es, die Umsetzbarkeit und Anwendbarkeit des Ansatzes „(D)TLS-over-Anything“ zu untersuchen und nachzuweisen, sowie einen Werkzeugkasten zur Definition und Implementierung entsprechender Sicherheitslösungen vorzubereiten. Als langjährig etablierter Standard im IT-Umfeld stellte sich das (Datagram) Transport Layer Security ((D)TLS) Protokoll in Kombination mit einer industrie- bzw. automatisierungskompatiblen Public-Key-Infrastruktur (PKI) als äußerst vielversprechende Möglichkeit dar, Datensicherheit auch im OT-Umfeld zu erzielen. Hierbei sollten insbesondere KMU adressiert werden, für welche eigene Entwicklungsarbeiten in diesem Umfeld häufig zu aufwändig und technisch sowie wirtschaftlich zu riskant sind.
Mit „SecureField“ konnten Ergebnisse auf mehreren Ebenen erzielt werden. Zunächst konnte im Projektverlauf ein umfassendes und generisches Konzept zur Ende-zu-Ende-Absicherung von Kommunikationspfaden und -protokollen im industriellen Umfeld erarbeitet werden. Dieses Konzept besteht aus einem generischen Kommunikationsmodell sowie aus einem generischen Authentifikationsmodell.
The development of Internet of Things (IoT) embedded devices is proliferating, especially in the smart home automation system. However, the devices unfortunately are imposing overhead on the IoT network. Thus, the Internet Engineering Task Force (IETF) have introduced the IPv6 Low-Power Wireless Personal Area Network (6LoWPAN) to provide a solution to this constraint. 6LoWPAN is an Internet Protocol (IP) based communication where it allows each device to connect to the Internet directly. As a result, the power consumption is reduced. However, the limitation of data transmission frame size of the IPv6 Routing Protocol for Low-power and Lossy Network’s (RPL’s) had made it to be the running overhead, and thus consequently degrades the performance of the network in terms of Quality of Service (QoS), especially in a large network. Therefore, HRPL was developed to enhance the RPL protocol to minimize redundant retransmission that causes the routing overhead. We introduced the T-Cut Off Delay to set the limit of the delay and the H field to respond to actions taken within the T-Cut Off Delay. Thus, this paper presents the comparison performance assessment of HRPL between simulation and real-world scenarios (6LoWPAN Smart Home System (6LoSH) testbed) in validating the HRPL functionalities. Our results show that HRPL had successfully reduced the routing overhead when implemented in 6LoSH. The observed Control Traffic Overhead (CTO) packet difference between each experiment is 7.1%, and the convergence time is 9.3%. Further research is recommended to be conducted for these metrics: latency, Packet Delivery Ratio (PDR), and throughput.
The Internet of Things (IoT) application has becoming progressively in-demand, most notably for the embedded devices (ED). However, each device has its own difference in computational capabilities, memory usage, and energy resources in connecting to the Internet by using Wireless Sensor Networks (WSNs). In order for this to be achievable, the WSNs that form the bulk of the IoT implementation requires a new set of technologies and protocol that would have a defined area, in which it addresses. Thus, IPv6 Low Power Area Network (6LoWPAN) was designed by the Internet Engineering Task Force (IETF) as a standard network for ED. Nevertheless, the communication between ED and 6LoWPAN requires appropriate routing protocols for it to achieve the efficient Quality of Service (QoS). Among the protocols of 6LoWPAN network, RPL is considered to be the best protocol, however its Energy Consumption (EC) and Routing Overhead (RO) is considerably high when it is implemented in a large network. Therefore, this paper would propose the HRPL to enchance the RPL protocol in reducing the EC and RO. In this study, the researchers would present the performance of RPL and HRPL in terms of EC, Control traffic Overhead (CTO) and latency based on the simulation of the 6LoWPAN network in fixed environment using COOJA simulator. The results show HRPL protocol achieves better performance in all the tested topology in terms of EC and CTO. However, the latency of HRPL only improves in chain topology compared with RPL. We found that further research is required to study the relationship between the latency and the load of packet transmission in order to optimize the EC usage.
Narrowband IoT (NB-IoT) as a radio access technology for the cellular Internet of Things (cIoT) is getting more traction due to attractive system parameters, new proposals in the 3 rd Generation Partnership Project (3GPP) Release 14 for reduced power consumption and ongoing world-wide deployment. As per 3GPP, the low-power and wide-area use cases in 5G specification will be addressed by the early NB-IoT and Long-Term Evolution for Machines (LTE-M) based technologies. Since these cIoT networks will operate in a spatially distributed environment, there are various challenges to be addressed for tests and measurements of these networks. To meet these requirements, unified emulated and field testbeds for NB-IoT-networks were developed and used for extensive performance measurements. This paper analyses the results of these measurements with regard to RF coverage, signal quality, latency, and protocol consistency.
The Transport Layer Security protocol is a widespread cryptographic protocol designed to provide secure communication over insecure networks by providing authenticity, integrity, and confidentiality. As a first step, in the TLS Handshake Protocol a common master secret is negotiated. In many configurations, this step makes considerable use of asymmetric cryptographic algorithms. It seems to be a prevalent assumption that the use of such asymmetric cryptographic algorithms is unsuitable for resource-constrained devices. Therefore, the work at hand analyzes the runtime performance of the TLS vl.2 session establishments on an embedded ARM Cortex-M4 platform. We measure the execution time to generate and parse session establishment messages for the client and server sides. In particular, we study the impact of different elliptic curves used for the ephemeral Diffie-Hellman key exchange and the impact of different lengths and subject public key algorithms of certification paths. Our analysis shows that the use of asymmetric cryptographic algorithms is well possible on resource-constrained devices, if carefully chosen and well implemented. This allows the use of the well-proven TLS protocol also for applications from the (Industrial) Internet of Things, including Fieldbus communication.
Spatially Distributed Wireless Networks (SDWN) are one of the basic technologies for the Internet of Things (IoT) and (Industrial) Internet of Things (IIoT) applications. These SDWN for many of these applications has strict requirements such as low cost, simple installation and operations, and high potential flexibility and mobility. Among the different Narrowband Wireless Wide Area Networking (NBWWAN) technologies, which are introduced to address these categories of wireless networking requirements, Narrowband Internet of Things (NB-IoT) is getting more traction due to attractive system parameters, energy-saving mode of operation with low data rates and bandwidth, and its applicability in 5G use cases. Since several technologies are available and because the underlying use cases come with various requirements, it is essential to perform a systematic comparative analysis of competing technologies to choose the right technology. It is also important to perform testing during different phases of the system development life cycle. This paper describes the systematic test environment for automated testing of radio communication and systematic measurements of the performance of NB-IoT.
Narrow Band-Wireless Wide Area Networking (NB-WWAN) technologies are becoming more popular across a wide range of application domains due to their ability to provide spatially distributed and reliable wireless connectivity in addition to offering low data rates, low bandwidth, long-range, and long battery life. For functional testing and performance assessments, the wide range of wireless technology alternatives within this category poses several difficulties. At the device level, it is necessary to address issues such as resource limitations, complex protocols, interoperability, and reliability, while at the network level, challenges include complex topologies and wireless channel/signal propagation problems. Testing the functionality and measuring the performance of spatially distributed NB-WWAN systems require a systematic approach to overcome these challenges. Furthermore, to provide a seamless test flow, it is also critical to test and compare the performance of wireless systems systematically and consistently across the different system development phases. To evaluate NB-WWAN technologies comprehensively across multiple abstraction levels—network simulators, emulated lab testbeds, and field test environments—we propose a unified multi-abstraction-level testing methodology. A detailed technical description of the prototype implementation and its evaluation is presented in this paper.