Refine
Document Type
- Conference Proceeding (13)
- Article (reviewed) (1)
- Contribution to a Periodical (1)
- Report (1)
Conference Type
- Konferenzartikel (13)
Is part of the Bibliography
- yes (16)
Keywords
- LPWAN (3)
- Internet of Things (2)
- 5G (1)
- 5G mobile communication (1)
- 6LoWPAN (1)
- EAP-TLS (1)
- Eingebettetes System (1)
- IoT (1)
- Long Term Evolution (1)
- Mobilkommunikation (1)
Institute
Open Access
- Closed Access (9)
- Open Access (4)
- Closed (3)
- Gold (2)
- Bronze (1)
Funding number
- 990101197 (1)
One of the main requirements of spatially distributed Internet of Things (IoT) solutions is to have networks with wider coverage to connect many low-power devices. Low-Power Wide-Area Networks (LPWAN) and Cellular IoT(cIOT) networks are promising candidates in this space. LPWAN approaches are based on enhanced physical layer (PHY) implementations to achieve long range such as LoRaWAN, SigFox, MIOTY. Narrowband versions of cellular network offer reduced bandwidth and, simplified node and network management mechanisms, such as Narrow Band IoT (NB-IoT) and Long-Term Evolution for Machines (LTE-M). Since the underlying use cases come with various requirements it is essential to perform a comparative analysis of competing technologies. This article provides systematic performance measurement and comparison of LPWAN and NB-IoT technologies in a unified testbed, also discusses the necessity of future fifth generation (5G) LPWAN solutions.
Wireless communication technologies play a major role to enable megatrends like Internet of Things (IoT) and Industry 4.0. The Narrowband Wireless WAN (NBWWAN) introduced to meet the long range and low power requirements of spatially distributed wireless communication use cases. These networks introduce additional challenges in testing because the network topology and RF characteristics become particularly complex and thus a multitude of different scenarios must be tested. This paper describes the infrastructure for automated testing of radio communication and for systematic measurements of the network performance of NBWWAN.
To enable megatrends like Internet of Things (IoT) reliable wireless communication technologies play a major role. Spatially distributed wireless technologies introduce additional challenges intesting. This article describes the overall architecture of a unified test environment and provides an overview of the performance investigations of various Low-Power-Wide-Area network (LPWAN) technologies for a smart waste management use case.
Institute of Reliable Embedded Systems and Communication Electronics, Offenburg University of Applied Sciences, Germany has developed an automated testing environment, Automated Physical TestBeds (APTB), for analyzing the performance of wireless systems and its supporting protocols. Wireless physical networking nodes can connect to this APTB and the antenna output of this attaches with the RF waveguides. To model the RF environment this RF waveguides then establish wired connection among RF elements like splitters, attenuators and switches. In such kind of set up it’s well possible to vary the path characteristics by altering the attenuators and switches. The major advantage of using APTB is the possibility of isolated, well controlled, repeatable test environment in various conditions to run statistical analysis and even to execute regression tests. This paper provides an overview of the design and implementation of APTB, demonstrates its ability to automate test cases, and its efficiency.
In the last decade, IPv6 over Low power Wireless Personal Area Networks (IEEE802.15.4), also known as 6LoWPAN, has well evolved as a primary contender for short range wireless communications and holds the promise of an Internet of Things, which is completely based on the Internet Protocol. The authors' team has developed a 6LoWPAN protocol stack in C language, the stack without the necessity to use a specific design environment or operating system. It is highly flexible, modular, and portable and can be enhanced by several interesting modules, like a Wake-On-Radio-(WOR) MAC layer or a TLS1.2 based security sublayer. The stack is made available as open source at https://github.com/hso-esk/emb6. It was extensively tested on the Automated Physical Testbed (APTB) for Wireless Systems, which is available in the authors' lab and allows a flexible setup and full control of arbitrary topologies. The results of the measurements demonstrate a very good stability and short-term with long-term performance also under dynamic conditions.
Wireless communication networks are crucial for enabling megatrends like the Internet of Things (IoT) and Industry 4.0. However, testing these networks can be challenging due to the complex network topology and RF characteristics, requiring a multitude of scenarios to be tested. To address this challenge, the authors developed and extended an automated testbed called Automated Physical TestBed (APTB). This testbed provides the means to conduct controlled tests, analyze coexistence, emulate multiple propagation paths, and model dependable channel conditions. Additionally, the platform supports test automation to facilitate efficient and systematic experimentation. This paper describes the extended architecture, implementation, and performance evaluation of the APTB testbed. The APTB testbed provides a reliable and efficient solution for testing wireless communication networks under various scenarios. The implementation and performance verification of the testbed demonstrate its effectiveness and usefulness for researchers and industry practitioners.
Narrow Band-Wireless Wide Area Networking (NB-WWAN) technologies are becoming more popular across a wide range of application domains due to their ability to provide spatially distributed and reliable wireless connectivity in addition to offering low data rates, low bandwidth, long-range, and long battery life. For functional testing and performance assessments, the wide range of wireless technology alternatives within this category poses several difficulties. At the device level, it is necessary to address issues such as resource limitations, complex protocols, interoperability, and reliability, while at the network level, challenges include complex topologies and wireless channel/signal propagation problems. Testing the functionality and measuring the performance of spatially distributed NB-WWAN systems require a systematic approach to overcome these challenges. Furthermore, to provide a seamless test flow, it is also critical to test and compare the performance of wireless systems systematically and consistently across the different system development phases. To evaluate NB-WWAN technologies comprehensively across multiple abstraction levels—network simulators, emulated lab testbeds, and field test environments—we propose a unified multi-abstraction-level testing methodology. A detailed technical description of the prototype implementation and its evaluation is presented in this paper.
The Internet of Things (IoT) application has becoming progressively in-demand, most notably for the embedded devices (ED). However, each device has its own difference in computational capabilities, memory usage, and energy resources in connecting to the Internet by using Wireless Sensor Networks (WSNs). In order for this to be achievable, the WSNs that form the bulk of the IoT implementation requires a new set of technologies and protocol that would have a defined area, in which it addresses. Thus, IPv6 Low Power Area Network (6LoWPAN) was designed by the Internet Engineering Task Force (IETF) as a standard network for ED. Nevertheless, the communication between ED and 6LoWPAN requires appropriate routing protocols for it to achieve the efficient Quality of Service (QoS). Among the protocols of 6LoWPAN network, RPL is considered to be the best protocol, however its Energy Consumption (EC) and Routing Overhead (RO) is considerably high when it is implemented in a large network. Therefore, this paper would propose the HRPL to enchance the RPL protocol in reducing the EC and RO. In this study, the researchers would present the performance of RPL and HRPL in terms of EC, Control traffic Overhead (CTO) and latency based on the simulation of the 6LoWPAN network in fixed environment using COOJA simulator. The results show HRPL protocol achieves better performance in all the tested topology in terms of EC and CTO. However, the latency of HRPL only improves in chain topology compared with RPL. We found that further research is required to study the relationship between the latency and the load of packet transmission in order to optimize the EC usage.
IPv6 over resource-constrained devices (6Lo) emerged as a de-facto standard for the Internet of Things (IoT) applications especially in home and building automation systems. We provide results of an investigation of the applicability of 6LoWPAN with RPL mesh networks for home and building automation use cases. The proper selection of Trickle parameters and neighbor reachable time-outs is important in the RPL protocol suite to respond efficiently to any path failure. These parameters were analyzed in the context of energy consumption w.r.t the number of control packets. The measurements were performed in an Automated Physical Testbeds (APTB). The results match the recommendation by RFC 7733 for selecting various parameters of RPL protocol suite. This paper shows the relationship between various RPL parameters and control traffic overhead during network rebuild. Comparative measurement results with Bluetooth Low Energy (BLE) in this work showed that 6Lo with RPL outperformed BLE in this use case with less control traffic overheads.