Refine
Document Type
- Article (reviewed) (7)
- Conference Proceeding (7)
- Doctoral Thesis (1)
Conference Type
- Konferenz-Abstract (6)
- Konferenz-Poster (1)
Is part of the Bibliography
- yes (15)
Keywords
- bimodal hearing (3)
- sound localization (3)
- binaural hearing (2)
- cochlear implant (2)
- hearing aid (2)
- interaural stimulation timing (2)
- speech in noise (2)
- Binaural hearing (1)
- Cochlea-Implantat (1)
- Cochlea-Implantate (1)
Institute
Open Access
- Open Access (10)
- Closed (5)
- Gold (3)
- Diamond (2)
Users of a cochlear implant (CI) in one ear, who are provided with a hearing aid (HA) in the contralateral ear, so-called bimodal listeners, are typically affected by a constant and relatively large interaural time delay offset due to differences in signal processing and differences in stimulation. For HA stimulation, the cochlear travelling wave delay is added to the processing delay, while for CI stimulation, the auditory nerve fibers are stimulated directly. In case of MED-EL CI systems in combination with different HA types, the CI stimulation precedes the acoustic HA stimulation by 3 to 10 ms. A self-designed, battery-powered, portable, and programmable delay line was applied to the CI to reduce the device delay mismatch in nine bimodal listeners. We used an A-B-B-A test design and determined if sound source localization improves when the device delay mismatch is reduced by delaying the CI stimulation by the HA processing delay (τ HA ). Results revealed that every subject in our group of nine bimodal listeners benefited from the approach. The root-mean-square error of sound localization improved significantly from 52.6° to 37.9°. The signed bias also improved significantly from 25.2° to 10.5°, with positive values indicating a bias toward the CI. Furthermore, two other delay values (τ HA –1 ms and τ HA +1 ms) were applied, and with the latter value, the signed bias was further reduced in some test subjects. We conclude that sound source localization accuracy in bimodal listeners improves instantaneously and sustainably when the device delay mismatch is reduced.
In bimodal cochlear implant (CI) / hearing aid (HA) users a constant interaural time delay in the order of several milliseconds occurs due to differences in signal processing of the devices. For MED-EL CI systems in combination with different HA types, we have quantified the respective device delay mismatch (Zirn et al. 2015). In the current study, we investigate the effect of the device delay mismatch in simulated and actual bimodal listeners on sound localization accuracy.
To deal with the device delay mismatch in actual bimodal listeners we delayed the CI stimulation according to the measured HA processing delay and two other values. With all delay values highly significant improvements of the rms error in the localization task were observed compared to the test without the delay. The results help to narrow down the optimal patient-specific delay value.
Zeitliche Anpassung führt zu verbesserter Schalllokalisation bei bimodal versorgten CI-/HG-Trägern
(2021)
Bei bimodal versorgten Cochlea-Implantaten (CI) / Hörgerät (HG)-Trägern entsteht durch die unterschiedliche Signalverarbeitung der Geräte eine konstante interaurale Zeitverzögerung in der Größenordnung von mehreren Millisekunden. Für MED-EL CI-Systeme in Kombination mit verschiedenen HG-Typen haben wir den jeweiligen Device-Delay-Mismatch quantifiziert. In der aktuellen Studie untersuchen wir den Einfluss der Device-Delay-Mismatch bei simulierten und tatsächlichen bimodalen Hörern auf die Genauigkeit der Schalllokalisation.
Um den Device-Delay-Mismatch bei bimodal versorgten Patienten zu verringern, haben wir die CI-Stimulation um die gemessene HG-Signallaufzeit und zwei weitere Werte verzögert. Nach einer Angewöhnungsphase war der effektive Winkelfehler bei Verzögerung um die HG-Signallaufzeit hochsignifikant reduziert im Vergleich zu der Testkondition ohne CI-Verzögerung (mittlere Verbesserung: 11 % ; p < .01, Wilcoxon Signed Rank Test). Aber auch mit den beiden weiteren Verzögerungswerten wurden Verbesserungen erreicht. Anhand der Ergebnisse lässt sich der optimale patientenspezifische Verzögerungswert näher eingrenzen.
When people with hearing loss are provided with different devices in each ear, these devices usually have different processing latencies. This leads to static temporal offsets between both ears in the order of several milliseconds. This thesis measured effects of such offsets in stimulation timing on mechanisms of binaural hearing, such as sound localization and speech understanding in noise in hearing-impaired and normal-hearing listeners.
Bei bimodaler Cochlea-Implantat-/Hörgerät-Versorgung kann es aufgrund seitenverschiedener Signalverarbeitung zu einer zeitlich versetzten Stimulation der beiden Modalitäten kommen. Jüngste Studien haben gezeigt, dass durch zeitlichen Abgleich der Modalitäten die Schalllokalisation bei bimodaler Versorgung verbessert werden kann. Um solch einen Abgleich vornehmen zu können, ist die messtechnische Bestimmung der Durchlaufzeit von Hörgeräten erforderlich. Kommerziell verfügbare Hörgerätemessboxen können diese Werte häufig liefern. Die dazu verwendete Signalverarbeitung wird dabei aber oft nicht vollständig offengelegt. In dieser Arbeit wird ein alternativer und nachvollziehbarer Ansatz zum Design eines simplen Messaufbaus basierend auf einem Arduino DUE Mikrocontroller-Board vorgestellt. Hierzu wurde ein Messtisch im 3D-Druck gefertigt, auf welchem Hörgeräte über einen 2-ccm-Kuppler an ein Messmikrofon angeschlossen werden können. Über einen Latenzvergleich mit dem simultan erfassten Signal eines Referenzmikrofons kann die Durchlaufzeit von Hörgeräten bestimmt werden. Frequenzspezifische Durchlaufzeiten werden mittels einer Kreuzkorrelation zwischen Ziel- und Referenzsignal errechnet. Aufnahme, Ausgabe und Speicherung der Signale erfolgt über einen ATMEL SAM3X8E Mikrocontroller, welcher auf dem Arduino DUE-Board verbaut ist. Über eigens entworfene elektronische Schaltungen werden die Mikrofone und der verwendete Lautsprecher angesteuert. Nach Abschluss einer Messung (Messdauer ca. 5 s) werden die Messdaten seriell an einen PC übertragen, auf dem die Datenauswertung mittels MATLAB erfolgt. Erste Validierungen zeigten eine hohe Stabilität der Messergebnisse mit sehr geringen Standardabweichungen im Bereich weniger Mikrosekunden für Pegel zwischen 50 und 75 dB (A). Der Messaufbau wird in laufenden Studien zur Quantifizierung der Durchlaufzeit von Hörgeräten verwendet.
In asymmetric treatment of hearing loss, processing latencies of the modalities typically differ. This often alters the reference interaural time difference (ITD) (i.e., the ITD at 0° azimuth) by several milliseconds. Such changes in reference ITD have shown to influence sound source localization in bimodal listeners provided with a hearing aid (HA) in one and a cochlear implant (CI) in the contralateral ear. In this study, the effect of changes in reference ITD on speech understanding, especially spatial release from masking (SRM) in normal-hearing subjects was explored. Speech reception thresholds (SRT) were measured in ten normal-hearing subjects for reference ITDs of 0, 1.75, 3.5, 5.25 and 7 ms with spatially collocated (S0N0) and spatially separated (S0N90) sound sources. Further, the cues for separation of target and masker were manipulated to measure the effect of a reference ITD on unmasking by A) ITDs and interaural level differences (ILDs), B) ITDs only and C) ILDs only. A blind equalization-cancellation (EC) model was applied to simulate all measured conditions. SRM decreased significantly in conditions A) and B) when the reference ITD was increased: In condition A) from 8.8 dB SNR on average at 0 ms reference ITD to 4.6 dB at 7 ms, in condition B) from 5.5 dB to 1.1 dB. In condition C) no significant effect was found. These results were accurately predicted by the applied EC-model. The outcomes show that interaural processing latency differences should be considered in asymmetric treatment of hearing loss.
In users of a cochlear implant (CI) together with a contralateral hearing aid (HA), so-called bimodal listeners, differences in processing latencies between digital HA and CI up to 9 ms constantly superimpose interaural time differences. In the present study, the effect of this device delay mismatch on sound localization accuracy was investigated. For this purpose, localization accuracy in the frontal horizontal plane was measured with the original and minimized device delay mismatch. The reduction was achieved by delaying the CI stimulation according to the delay of the individually worn HA. For this, a portable, programmable, battery-powered delay line based on a ring buffer running on a microcontroller was designed and assembled. After an acclimatization period to the delayed CI stimulation of 1 hr, the nine bimodal study participants showed a highly significant improvement in localization accuracy of 11.6% compared with the everyday situation without the delay line (p < .01). Concluding, delaying CI stimulation to minimize the device delay mismatch seems to be a promising method to increase sound localization accuracy in bimodal listeners.
Subjects utilizing a cochlear implant (CI) in one ear and a hearing aid (HA) on the contralateral ear suffer from mismatches in stimulation timing due to different processing latencies of both devices. This device delay mismatch leads to a temporal mismatch in auditory nerve stimulation. Compensating for this auditory nerve stimulation mismatch by compensating for the device delay mismatch can significantly improve sound source localization accuracy. One CI manufacturer has already implemented the possibility of mismatch compensation in its current fitting software. This study investigated if this fitting parameter can be readily used in clinical settings and determined the effects of familiarization to a compensated device delay mismatch over a period of 3–4 weeks. Sound localization accuracy and speech understanding in noise were measured in eleven bimodal CI/HA users, with and without a compensation of the device delay mismatch. The results showed that sound localization bias improved to 0°, implying that the localization bias towards the CI was eliminated when the device delay mismatch was compensated. The RMS error was improved by 18% with this improvement not reaching statistical significance. The effects were acute and did not further improve after 3 weeks of familiarization. For the speech tests, spatial release from masking did not improve with a compensated mismatch. The results show that this fitting parameter can be readily used by clinicians to improve sound localization ability in bimodal users. Further, our findings suggest that subjects with poor sound localization ability benefit the most from the device delay mismatch compensation.
Introduction: Subjects with mild to moderate hearing loss today often receive hearing aids (HA) with open-fitting (OF). In OF, direct sound reaches the eardrums with minimal damping. Due to the required processing delay in digital HA, the amplified HA sound follows some milliseconds later. This process occurs in both ears symmetrically in bilateral HA provision and is likely to have no or minor detrimental effect on binaural hearing. However, the delayed and amplified sound are only present in one ear in cases of unilateral hearing loss provided with one HA. This processing alters interaural timing differences in the resulting ear signals.
Methods: In the present study, an experiment with normal-hearing subjects to investigate speech intelligibility in noise with direct and delayed sound was performed to mimic unilateral and bilateral HA provision with OF.
Results: The outcomes reveal that these delays affect speech reception thresholds (SRT) in the unilateral OF simulation when presenting speech and noise from different spatial directions. A significant decrease in the median SRT from –18.1 to –14.7 dB SNR is observed when typical HA processing delays are applied. On the other hand, SRT was independent of the delay between direct and delayed sound in the bilateral OF simulation.
Discussion: The significant effect emphasizes the development of rapid processing algorithms for unilateral HA provision.