Refine
Document Type
Conference Type
- Konferenzartikel (6)
Language
- English (8)
Is part of the Bibliography
- yes (8)
Keywords
- CIoT (1)
- Cellular networks (1)
- Eingebettetes System (1)
- Industry automation (1)
- Intelligentes Stromnetz (1)
- Low-latency (1)
- URLLC (1)
- V2X (1)
Institute
Open Access
- Closed Access (4)
- Open Access (3)
- Grün (1)
OPC UA (Open Platform Communications Unified Architecture) is already a well-known concept used widely in the automation industry. In the area of factory automation, OPC UA models the underlying field devices such as sensors and actuators in an OPC UA server to allow connecting OPC UA clients to access device-specific information via a standardized information model. One of the requirements of the OPC UA server to represent field device data using its information model is to have advanced knowledge about the properties of the field devices in the form of device descriptions. The international standard IEC 61804 specifies EDDL (Electronic Device Description Language) as a generic language for describing the properties of field devices. In this paper, the authors describe a possibility to dynamically map and integrate field device descriptions based on EDDL into OPCUA.
Digital networked communications are the key to all Internet-of-Things applications, especially to smart metering systems and the smart grid. In order to ensure a safe operation of systems and the privacy of users, the transport layer security (TLS) protocol, a mature and well standardized solution for secure communications, may be used. We implemented the TLS protocol in its latest version in a way suitable for embedded and resource-constrained systems. This paper outlines the challenges and opportunities of deploying TLS in smart metering and smart grid applications and presents performance results of our TLS implementation. Our analysis shows that given an appropriate implementation and configuration, deploying TLS in constrained smart metering systems is possible with acceptable overhead.
Fifth-generation (5G) cellular mobile networks are expected to support mission-critical low latency applications in addition to mobile broadband services, where fourth-generation (4G) cellular networks are unable to support Ultra-Reliable Low Latency Communication (URLLC). However, it might be interesting to understand which latency requirements can be met with both 4G and 5G networks. In this paper, we discuss (1) the components contributing to the latency of cellular networks and (2) evaluate control-plane and user-plane latencies for current-generation narrowband cellular networks and point out the potential improvements to reduce the latency of these networks, (3) present, implement and evaluate latency reduction techniques for latency-critical applications. The two elements we detected, namely the short transmission time interval and the semi-persistent scheduling are very promising as they allow to shorten the delay to processing received information both into the control and data planes. We then analyze the potential of latency reduction techniques for URLLC applications. To this end, we develop these techniques into the long term evolution (LTE) module of ns-3 simulator and then evaluate the performance of the proposed techniques into two different application fields: industrial automation and intelligent transportation systems. Our detailed evaluation results from simulations indicate that LTE can satisfy the low-latency requirements for a large choice of use cases in each field.
Time Sensitive Networking (TSN) provides mechanisms to enable deterministic and real-time networking in industrial networks. Configuration of these mechanisms is key to fully deploy and integrate TSN in the networks. The IEEE 802.1 Qcc standard has proposed different configuration models to implement a TSN configuration. Up until now, TSN and its configuration have been explored mostly for Ethernet-based industrial networks. However, they are still considered “work-in-progress” for wireless networks. This work focuses on the fully centralized model and describes a generic concept to enable the configuration of TSN mechanisms in wireless industrial networks. To this end, a configuration entity is implemented to conFigure the wireless end stations to satisfy their requirements. The proposed solution is then validated with the Digital Enhanced Cordless Telecommunication ultra-low energy (DECT ULE) wireless communication protocol.
Low latency communication is essential to enable mission-critical machine-type communication (mMTC) use cases in cellular networks. Factory and process automation are major areas that require such low latency communication. In this paper, we investigate the potential of adopting the semi-persistent scheduling (SPS) latency reduction technique in narrowband LTE (NB-LTE) networks and provide a comprehensive performance evaluation. First, we investigate and implement SPS in an open-source network simulator (NS3). We perform simulations with a focus on LTE-M and Narrowband IoT (NB-IoT) systems and evaluate the impact of the SPS technique on the uplink latency of these narrowband systems in real industrial automation scenarios. The performance gain of adopting SPS is analyzed and the results is compared with the legacy dynamic scheduling. Our results show that SPS has the potential to reduce the latency of cellular Internet of Things (cIoT) networks. We believe that SPS can be integrated into LTE-M and NB-IoT systems to support low-latency industrial applications.
Enabling ultra-low latency is one of the major drivers for the development of future cellular networks to support delay sensitive applications including factory automation, autonomous vehicles and tactile internet. Narrowband Internet of Things (NB-IoT) is a 3 rd Generation Partnership Project (3GPP) Release 13 standardized cellular network currently optimized for massive Machine Type Communication (mMTC). To reduce the latency in cellular networks, 3GPP has proposed some latency reduction techniques that include Semi Persistent Scheduling (SPS) and short Transmission Time Interval (sTTI). In this paper, we investigate the potential of adopting both techniques in NB-IoT networks and provide a comprehensive performance evaluation. We firstly analyze these techniques and then implement them in an open-source network simulator (NS3). Simulations are performed with a focus on Cat-NB1 User Equipment (UE) category to evaluate the uplink user-plane latency. Our results show that SPS and sTTI have the potential to greatly reduce the latency in NB-IoT systems. We believe that both techniques can be integrated into NB-IoT systems to position NB-IoT as a preferred technology for low data rate Ultra-Reliable Low-Latency Communication (URLLC) applications before 5G has been fully rolled out.
The last several years have witnessed a paradigm shift in industry that has now ushered in the fourth industrial revolution era also referred to as Industry 4.0. This new technology promises major improvements in the industrial processes by connecting local and global networks for information exchange amongst smart machinery while integrating possibly all stages of the value chain. However, small and medium-sized enterprises (SMEs) still have many concerns about Industry 4.0 and about its potential benefits. This is generally as a result of high investment and conversion costs. An evaluation platform to test Industry 4.0 applications for enabling engineers and managers in identifying the potential benefits before making expensive decisions is attractive. With this aim, the authors present an extensible and customizable open source toolkit for the evaluation of Industry 4.0 applications by providing a complete set of capabilities from sensing of data at the shop floor to monitoring at the upper level of the enterprise.