Refine
Document Type
- Article (reviewed) (9)
- Article (unreviewed) (3)
- Report (3)
- Conference Proceeding (1)
Conference Type
- Konferenzartikel (1)
Is part of the Bibliography
- yes (16)
Keywords
- Wärmepumpe (8)
- Gebäudetechnik (3)
- General Energy (3)
- Electrical Engineering (2)
- Electronic Engineering (2)
- Energietechnik (2)
- heat pump (2)
- Bautechnik (1)
- Bauökologie (1)
- Building (1)
Institute
Open Access
- Open Access (10)
- Closed (6)
- Bronze (4)
- Gold (4)
- Hybrid (2)
Funding number
- 950102097 (1)
LowEx-Konzepte für die Wärmeversorgung von Mehrfamilien-Bestandsgebäuden ("LowEx-Bestand Analyse")
(2023)
Der vorliegende Abschlussbericht fasst die Ergebnisse der wissenschaftlichen Querspange »LowEx-Bestand Analyse« des thematischen Projektverbunds »LowEx-Konzepte für die Wärmeversorgung von Mehrfamilien-Bestandsgebäuden (LowEx-Bestand)« zusammen. In diesem Verbund arbeiteten drei Forschungsinstitute mit Herstellern von Heizungs- und Lüftungstechnik und mit Unternehmen der Wohnungswirtschaft zusammen. Gemeinsam wurden Lösungen entwickelt, analysiert und demonstriert, die den effizienten Einsatz von Wärmepumpen, Wärmeübergabesystemen und Lüftungssystemen bei der energetischen Modernisierung von Mehrfamiliengebäuden zum Ziel haben. LowEx-Systeme arbeiten durch geringe Temperaturdifferenzen zwischen Heizmedium und Nutzwärmebesonders effizient. Wärmepumpen haben dabei erhebliches Potenzial zur Absenkung der spezifischen CO2-Emissionen bei der Wärmebereitstellung. Für die energetische Modernisierung von Mehrfamiliengebäuden ist der Einsatz solcher Systeme mit besonderen Herausforderungen und Anforderungen an die Übergabe der Raumwärme, die Warmwasserbereitung und die Nutzung von Umweltwärme verbunden. Diese Herausforderungen werden in LowEx-Bestand adressiert.
Am 1. Juli 2022 trafen sich im Rahmen des Abschlusskolloquiums des Projekts ACA-Modes rund 60 Teilnehmende aus Forschung, Lehre und Industrie zu einer internationalen Konferenz an der Hochschule Offenburg. Hier wurden die Projektergebnisse rund um die erfolgreiche Implementierung modellprädiktiver Regelstrategien vorgestellt, aktuelle Fragestellungen diskutiert und Entwicklungspfade hin zu einem netzdienlichen Betrieb von Energieverbundsystemen skizziert.
Wirtschaftlichkeitsbetrachtung eines smarten Energiekonzepts für ein Bestandsquartier in Karlsruhe
(2023)
Die Transformation der Energieversorgung in Bestandsgebäuden ist für die Erreichung der Klimaziele im Gebäudesektor entscheidend. In einem modellhaften Quartiersprojekt in Karlsruhe-Durlach wird ein ‚smartes Energiekonzept‘, bestehend aus Wärmepumpen, Blockheizkraftwerk und PV-Anlagen mit lokalem Strom- und Wärmenetz umgesetzt und messtechnisch begleitet. Ziel ist dabei eine CO2-effiziente und wirtschaftliche Bereitstellung von Wärme und Strom.
In dem Artikel wird eine Wirtschaftlichkeitsbetrachtung für das Wärme- und Stromcontracting auf Basis der realen Investitionskosten sowie der gemessenen und berechneten Energieflüsse durchgeführt. Die Wärmegestehungskosten hängen neben den Investitionskosten von den energiewirtschaftlichen Rahmenbedingungen ab. Mit ansteigender CO2-Steuer werden mittelfristig Wärmegestehungskosten erreicht, die unter denen konventioneller Energiesysteme liegen. Dadurch bietet das integrierte Energiekonzept ein breites Anwendungspotenzial für städtische Bestandsquartiere außerhalb von Fernwärme-Gebieten.
A smart energy concept was designed and implemented for a cluster of 5 existing multi-family houses, which combines heat pumps, photovoltaic (PV) modules and combined heat and power units (CHP) to achieve energy- and cost-efficient operation. Measurement results of the first year of operation show that the local power generation by PV modules and CHP unit has a positive effect on the electrical self-sufficiency by reducing electricity import from the grid. In winter, when the CHP unit operates continuously for long periods, the entire electricity for the heat pump and 91 % of the total electricity demand of the neighborhood are supplied locally. In summer, only 53 % is generated within the neighborhood. The use of a specifically developed energy management system EMS is intended to further increase this share. CO2 emissions for heating and electricity of the neighborhood are evaluated and amount to 18.4 kg/(m2a). Compared to the previous energy system consisting of gas boilers (29.1 kg/(m2a)), savings of 37 % are achieved with electricity consumption from the grid being reduced by 65 %. In the second construction stage, an additional heat pump, CHP unit and PV modules will be added. The measurement results indicate that the final district energy system is likely to achieve the ambitious CO2 reduction goal of -50% and further increase the self-sufficiency of the district.
Der prozentuale Energieaufwand für die Warmwasserbereitung ist umso höher, je geringer der Bedarf an Raumwärme – erreicht durch besser gedämmte Gebäudehüllen – ist. Gleichzeitig kann dieser Aufwand für Warmwasser aufgrund der normativ geforderten Systemtemperaturen von 60/55 °C bei zentraler Warmwasserbereitung über Wärmepumpen nur vergleichsweise energieaufwendig abgedeckt werden. Eine Studie des Fraunhofer ISE zeigt, wie groß dieser Temperatur-Effekt im Vergleich unterschiedlicher Trinkwasser-Erwärmungssysteme ist.
In der Studie "Technisch-wissenschaftliche Analyse zur Energieeffizienz unterschiedlicher Trinkwasser-Erwärmungssysteme im Vergleich" im Auftrag der Viega GmbH & Co. KG werden verschiedene Trinkwasser-Erwärmungssysteme hinsichtlich ihrer Energieeffizienz in Wärmepumpensystemen vergleichend untersucht. Neben Aufbau und Parametrierung eines Simulationsmodells sowie Integration von Lastreihen nach Norm umfasst die Studie eine detaillierte Abbildung aller untersuchten Systeme. Dabei liegt ein Schwerpunkt auf der Einordnung des Energieeinsparpotenzials durch eine Warmwassertemperaturreduktion mit dem Viega AVS Trinkwasser Management System. Die untersuchten Varianten sind: Referenzsystem 1: Durchflusstrinkwassererwärmer DTE (1 stufig) mit Rücklaufeinschichtung. System 2: Viega DTE (2 stufig). System 3: Viega AVS Trinkwasser Management System mit DTE (2 stufig) und Ultrafiltrationsmodul im Zirkulationsrücklauf UFC. System 4: Wohnungsstation, 4-Leiter-System. System 5: Wohnungsstation, 2-Leiter-System. System 6: Elektrischer Durchlauferhitzer. Die Studie ergab, dass sich bei Einsatz einer Niedertemperatur-Wärmepumpe mit maximaler Vorlauftemperatur von 58 °C das Viega AVS System mit DTE und UFC, dezentrale elektrische Durchlauferhitzer sowie das 4-Leiter-System bei einer Trinkwassertemperatur von 45°C im Vergleich als energetisch am besten erweisen. Bei einer Wärmepumpe mit einer höheren maximalen Vorlauftemperatur von 64 °C kann auch das 4-Leiter-System bei einer Trinkwassertemperatur von 50°C sinnvoll eingesetzt werden. Die Ergebnisse zeigten auch, dass je höher die durch die Wärmepumpe bereitgestellte Temperatur (maximale Vorlauftemperatur), desto besser lassen sich auch die anderen Systeme einsetzen, da sich dadurch der Einsatz des Backup-Systems minimieren lässt. Das Viega Aqua VIP System mit Temperaturabsenkung schneidet im Vergleich sehr gut hinsichtlich des Einsatzes der Endenergie und der zu erreichenden Jahresarbeitszahl ab. Der Einsatz dieses Systems in Kombination mit einer Wärmepumpe bietet Potenzial für den Einsatz erneuerbarer Energien.
Der vorliegende Leitfaden entstand im Rahmen der wissenschaftlichen Querspange »LowEx-Bestand Analyse« des thematischen Projektverbunds »LowEx-Konzepte für die Wärmeversorgung von Mehrfamilien-Bestandsgebäuden (LowEx-Bestand)« zusammen. In diesem Verbund arbeiteten die drei Forschungsinstitute Fraunhofer ISE, KIT und Universität Freiburg (INATECH) mit Herstellern von Heizungs- und Lüftungstechnik und mit Unternehmen der Wohnungswirtschaft zusammen. Gemeinsam wurden Lösungen entwickelt, analysiert und demonstriert, die den effizienten Einsatz von Wärmepumpen, Wärmeübergabesystemen und Lüftungssystemen bei der energetischen Modernisierung von Mehrfamiliengebäuden zum Ziel haben.
Wärmepumpen sind eine Schlüsseltechnologie der Wärmewende. Durch die Nutzbarmachung von Umweltwärme und den Antrieb mit Elektrizität, die zunehmend aus erneuerbaren Energien gewonnen wird, kann die CO2-Intensität der Wärmeversorgung gesenkt werden. Eine Herausforderung besteht in der Anwendung in größeren Mehrfamilienbestandsgebäuden. Lösungsansätze und beispielhafte Umsetzungen werden hierzu vorgestellt.
Photovoltaic-heat pump (PV-HP) combinations with battery and energy management systems are becoming increasingly popular due to their ability to increase the autarchy and utilization of self-generated PV electricity. This trend is driven by the ongoing electrification of the heating sector and the growing disparity between growing electricity costs and reducing feed-in tariffs in Germany. Smart control strategies can be employed to control and optimize the heat pump operation to achieve higher self-consumption of PV electricity. This work presents the evaluation results of a smart-grid ready controlled PV-HP-battery system in a single-family household in Germany, using 1-minute-high-resolution field measurement data. Within 12 months evaluation period, a self-consumption of 43% was determined. The solar fraction of the HP amounts to 36%, enabled also due to higher set temperatures for space heating and domestic hot water production. Accordingly, the SPF decreases by 4.0% the space heating and by 5.7% in the domestic hot water mode. The combined seasonal performance factor for the heat pump system increases from 4.2 to 6.7, when only considering the electricity taken from the grid and disregarding the locally generated electricity supplied from photovoltaic and battery units.