Refine
Year of publication
Document Type
- Conference Proceeding (43)
- Article (unreviewed) (5)
- Contribution to a Periodical (3)
- Part of a Book (2)
- Report (2)
Conference Type
- Konferenzartikel (43)
Keywords
- Eingebettetes System (4)
- VRU eSafety (4)
- localization (4)
- secondary surveillance radar (4)
- Kommunikation (3)
- time of flight (3)
- Internet of Things (2)
- Performance evaluation (2)
- angle of arrival (2)
- gPTP (2)
Institute
Open Access
- Closed Access (22)
- Open Access (17)
- Closed (11)
- Bronze (9)
- Grün (1)
One of the main requirements of spatially distributed Internet of Things (IoT) solutions is to have networks with wider coverage to connect many low-power devices. Low-Power Wide-Area Networks (LPWAN) and Cellular IoT(cIOT) networks are promising candidates in this space. LPWAN approaches are based on enhanced physical layer (PHY) implementations to achieve long range such as LoRaWAN, SigFox, MIOTY. Narrowband versions of cellular network offer reduced bandwidth and, simplified node and network management mechanisms, such as Narrow Band IoT (NB-IoT) and Long-Term Evolution for Machines (LTE-M). Since the underlying use cases come with various requirements it is essential to perform a comparative analysis of competing technologies. This article provides systematic performance measurement and comparison of LPWAN and NB-IoT technologies in a unified testbed, also discusses the necessity of future fifth generation (5G) LPWAN solutions.
Wireless sensor networks have found their way into a wide range of applications, among which environmental monitoring systems have attracted increasing interests of researchers. Main challenges for these applications are scalability of the network size and energy efficiency of the spatially distributed nodes. Nodes are mostly battery-powered and spend most of their energy budget on the radio transceiver module. In normal operation modes most energy is spent waiting for incoming frames. A so-called Wake-On-Radio (WOR) technology helps to optimize trade-offs between energy consumption, communication range, complexity of the implementation and response time. We already proposed a new protocol called SmartMAC that makes use of such WOR technology. Furthermore, it gives the possibility to balance the energy consumption between sender and receiver nodes depending on the use case. Based on several calculations and simulations, it was predicted that the SmartMAC protocol was significantly more efficient than other schemes being proposed in recent publications, while preserving a certain backward compatibility with standard IEEE802.15.4 transceivers. To verify this prediction, we implemented the SmartMAC protocol for a given hardware platform. This paper compares the realtime performance of the SmartMAC protocol against simulation results, and proves the measured values are very close to the estimated values. Thus we believe that the proposed MAC algorithms outperforms all other Wake-on-Radio MACs.
Das Monitoring von Industrieanlagen stellt in der Wirtschaft sicher, dass hoch-automatisierte Prozesse reibungslos ablaufen können. Meistens steht hier das Monitoring der Anlagen selbst im Mittelpunkt, die Kommunikationsleitungen für den Datenaustausch auf Ethernet-Basis (z.B. Profinet) sind gegenwärtig noch nicht Teil einer kontinuierlichen Überwachung. Zwar werden auch hier die physischen Verbindungen überprüft, jedoch geschieht häufig dies nur zum Zeitpunkt der Inbetriebnahme, wenn die Anlage noch nicht in das Gesamtsystem integriert ist oder während eines Wartungszyklus, wenn die Maschine für die Dauer der Wartung aus dem Betriebsablauf genommen wird. Dies führt dazu, dass insbesondere heute, wo vor allem Ethernet zunehmend als Basis für die industrielle Kommunikation herangezogen wird, Maschinenausfälle aufgrund fehlender Kabelüberwachung immer wahrscheinlicher werden. Um dem entgegenwirken zu können, wurde im Projekt Ko2SiBus ein neues Messverfahren konzipiert, implementiert und validiert, das kostengünstig in neue oder bestehende Systeme integriert werden kann. Um die Tauglichkeit zu zeigen, wurden die Projektergebnisse in Prototypen und Demonstratoren implementiert, die sowohl als Stand-Alone aber auch als Integrationslösungen dienen können.
For the past few years Low Power Wide Area Networks (LPWAN) have emerged as key technologies for the connectivity of many applications in the Internet of Things (IoT) combining low-data rates with strict cost and energy restrictions. Especially LoRa/LoRaWAN enjoys a high visibility on today’s markets, because of its good performance and its open community. Originally LoRa was designed for operation within the Sub-GHz ISM bands for Industrial, Scientific and Medical applications. However, at the end of 2018, a LoRa-based solution in the 2.4GHz ISM-band was presented promising higher bandwidths and higher data rates. Furthermore, it overcomes the limited duty-cycle prescribed by the regulations in the ISM-bands and therefore also opens doors to many novel application fields. Also, due to higher bandwidths and shorter transmission times, the use of alternative MAC layer protocols becomes very interesting, i.e. for TDMA based-approaches. Within this paper, we propose a system architecture with 2.4GHz LoRa components combining two aspects. On the one hand, we present a design and an implementation of a 2.4GHz based LoRaWAN solution that can be seamlessly integrated into existing LoRaWAN back-hauls. On the other hand, we describe deterministic setup using a Time Slotted Channel Hopping (TSCH) approach as defined in the IEEE802.15.4-2015 standard for industrial applications. Finally, measurements show the performance of the system.
The number of use cases for autonomous vehicles is increasing day by day especially in commercial applications. One important application of autonomous vehicles can be found within the parcel delivery section. Here, autonomous cars can massively help to reduce delivery efforts and time by supporting the courier actively. One important component of course is the autonomous vehicle itself. Nevertheless, beside the autonomous vehicle, a flexible and secure communication architecture also is a crucial key component impacting the overall performance of such system since it is required to allow continuous interactions between the vehicle and the other components of the system. The communication system must provide a reliable and secure architecture that is still flexible enough to remain practical and to address several use cases. In this paper, a robust communication architecture for such autonomous fleet-based systems is proposed. The architecture provides a reliable communication between different system entities while keeping those communications secure. The architecture uses different technologies such as Bluetooth Low Energy (BLE), cellular networks and Low Power Wide Area Network (LPWAN) to achieve its goals.
Eine kontinuierliche Überwachung von Ethernet-Leitungne beugt Maschinenausfällen in der Industrie vor. Aktuell fehlen jedoch geiegnete Methoden, um diese Überwachung flächendeckend durchzuführen. Im Projekt Ko²SiBus wurde deshalb ein kostengünstiges Verfahren zur kontinuierlichen Überwachung von Ethernet-Leitungen entwickelt.
Schlussbericht VanAssist
(2021)
The monitoring of industrial environments ensures that highly automated processes run without interruption. However, even if the industrial machines themselves are monitored, the communication lines are currently not continuously monitored in todays installations. They are checked usually only during maintenance intervals or in case of error. In addition, the cables or connected machines usually have to be removed from the system for the duration of the test. To overcome these drawbacks, we have developed and implemented a cost-efficient and continuous signal monitoring of Ethernet-based industrial bus systems. Several methods have been developed to assess the quality of the cable. These methods can be classified to either passive or active. Active methods are not suitable if interruption of the communication is undesired. Passive methods, on the other hand, require oversampling, which calls for expensive hardware. In this paper, a novel passive method combined with undersampling targeting cost-efficient hardware is proposed.
With the surge in global data consumption with proliferation of Internet of Things (IoT), remote monitoring and control is increasingly becoming popular with a wide range of applications from emergency response in remote regions to monitoring of environmental parameters. Mesh networks are being employed to alleviate a number of issues associated with single-hop communication such as low area coverage, reliability, range and high energy consumption. Low-power Wireless Personal Area Networks (LoWPANs) are being used to help realize and permeate the applicability of IoT. In this paper, we present the design and test of IEEE 802.15.4-compliant smart IoT nodes with multi-hop routing. We first discuss the features of the software stack and design choices in hardware that resulted in high RF output power and then present field test results of different baseline network topologies in both rural and urban settings to demonstrate the deployability and scalability of our solution.