Refine
Document Type
- Conference Proceeding (11)
- Report (1)
Conference Type
- Konferenzartikel (10)
- Sonstiges (1)
Has Fulltext
- no (12)
Is part of the Bibliography
- yes (12)
Keywords
- Radar (3)
- UWB radars (2)
- catheter ablation (2)
- imaging algorithms (2)
- medical imaging (2)
- microwave (2)
- scattering measurements (2)
- Amplitude and Phase Errors (1)
- Angle of Arrival (1)
- Automotive Radar (1)
Institute
Open Access
- Closed (6)
- Closed Access (5)
- Diamond (1)
- Open Access (1)
Analysis of Amplitude and Phase Errors in Digital-Beamforming Radars for Automotive Applications
(2020)
Fundamentally, automotive radar sensors with Digital-Beamforming (DBF) use several transmitter and receiver antennas to measure the direction of the target. However, hardware imperfections, tolerances in the feeding lines of the antennas, coupling effects as well as temperature changes and ageing will cause amplitude and phase errors. These errors can lead to misinterpretation of the data and result in hazardous actions of the autonomous system. First, the impact of amplitude and phase errors on angular estimation is discussed and analyzed by simulations. The results are compared with the measured errors of a real radar sensor. Further, a calibration method is implemented and evaluated by measurements.
Investigation of the Angle Dependency of Self-Calibration in Multiple-Input-Multiple-Output Radars
(2021)
Multiple-Input-Multiple-Output (MIMO) is a key technology in improving the angular resolution (spatial resolution) of radars. In MIMO radars the amplitude and phase errors in antenna elements lead to increase in the sidelobe level and a misalignment of the mainlobe. As the result the performance of the antenna channels will be affected. Firstly, this paper presents analysis of effect of the amplitude and phase errors on angular spectrum using Monte-Carlo simulations. Then, the results are compared with performed measurements. Finally, the error correction with a self-calibration method is proposed and its angle dependency is evaluated. It is shown that the values of the errors change with an incident angle, which leads to a required angle-dependent calibration.
Estimation of Scattering and Transfer Parameters in Stratified Dispersive Tissues of the Human Torso
(2021)
The aim of this study is to understand the effect of the various layers of biological tissues on electromagnetic radiation in a certain frequency range. Understanding these effects could prove crucial in the development of dynamic imaging systems under operating environments during catheter ablation in the heart. As the catheter passes through some arterial paths in the region of interest inside the heart through the aorta, a three-dimensional localization of the catheter is required. In this paper, a study is given on the detection of the catheter by using electromagnetic waves. Therefor, an appropriate model for the layers of the human torso is defined and simulated without and with an inserted electrode.
In this study, various imaging algorithms for the localization of objects have been investigated. Therefore, an Ultra-Wideband (UWB) radar based experimental setup with a circular antenna array is designed as part of this work. This concept could be particularly useful in microwave medical imaging applications. In order to validate its applicability in microwave imaging, different imaging algorithms have been evaluated and compared by means of our experimental setup. Accurate imaging results have been achieved with our system under multiple test-scenarios.
In this study, an approach to a microwave-based radar system for the localization of objects has been proposed. This could be particularly useful in microwave imaging applications such as cardiac catheter detection. An experimental system is defined and realized with the selection of an appropriate antenna design. Hardware control functions and different imaging algorithms are implemented as well. The functionality of this measurement setup has been analyzed considering multiple testscenarios and it is proved to be capable of locating multiple objects as well as expanded objects.
In automotive parking scenario, where the curb shall be detected and classified to be traversable or not, radars play an important role. There are different approaches already proposed in other works to estimate the target height. This paper assesses and compares two methods. The first is based on Angle of Arrival (AoA) estimation of input signals of multiple antennas using the Multiple-Input-Multiple-Output (MIMO) principle. The second method uses the geometry in multipath propagation of the radar echo signal for one antenna input. In this work a modified method of calculation of the curb height based on the second method is proposed. The theory of approach is mathematically proved and effectiveness is demonstrated by evaluation of measurements with a 77 GHz Frequency Modulated Continuous Wave (FMCW) radar. In order to evaluate the performance of the introduced method the mean square error (MSE) is used in the proposed scenario. This method, using only one antenna input, produced up to 3.4 times better results for curb height detection in comparison with former methods.
Das Ziel des Projekts PRYSTINE war es, eine fehlertolerante 360°-Rundumwahrnehmung für das hochautomatisierte Fahren in städtischen und ländlichen Umgebungen, auf Basis einer robusten Radar- und Lidar-Sensorfusion sowie Kontrollfunktionen, zu realisieren.
Im Teilvorhaben "Entwurf der Systemarchitektur von Radarsensoren auf Grundlage identifizierter Szenarien" stand die Entwicklung eines zukunftsfähigen RF-CMOS basierten Radarsystems im Fokus, das sich durch eine hohe Robustheit und Fehlertoleranz bei gleichzeitiger Reduktion der Kosten, Chipfläche und Leistungsaufnahme auszeichnet.
Darin war die Hochschule Offenburg sowohl an der Spezifizierung und am Entwurf einer Systemarchitektur für einen neuartigen RF-CMOS basierten Radarchip als auch an der anschließenden Untersuchung und Validierung des im Projekt realisierten hochauflösenden Radarsensors beteiligt.
Skin cancer detection proves to be complicated and highly dependent on the examiner’s skills. Millimeter-wave technologies seem to be a promising aid for the detection of skin cancer. The different water content of the skin area affected by cancer compared to healthy skin changes its reflective property. Due to limited available resources on the dielectric properties of skin cancer, especially in comparison to surrounding healthy skin, accurate simulations and evaluations are quite challenging. Therefore, comparing different results for different approaches and starting points can be difficult. In this paper, the Effective Medium Theory is applied to model skin cancer, which provides permittivity values dependent on the water content.
A method for evaluating skin cancer detection based on millimeter-wave technologies is presented. For this purpose, the relative permittivities are calculated using the effective medium theory for the benign and cancerous lesion, considering the change in water content between them. These calculated relative permittivities are further used for the simulation and evaluation of skin cancer detection using a substrate-integrated waveguide probe. A difference in the simulated scattering parameters S 11 of up to 13dB between healthy and cancerous skin can be determined in the best-case.
Autonomous driving is disrupting the automotive industry as we know it today. For this, fail-operational behavior is essential in the sense, plan, and act stages of the automation chain in order to handle safety-critical situations on its own, which currently is not reached with state-of-the-art approaches.The European ECSEL research project PRYSTINE realizes Fail-operational Urban Surround perceptION (FUSION) based on robust Radar and LiDAR sensor fusion and control functions in order to enable safe automated driving in urban and rural environments. This paper showcases some of the key exploitable results (e.g., novel Radar sensors, innovative embedded control and E/E architectures, pioneering sensor fusion approaches, AI-controlled vehicle demonstrators) achieved until its final year 3.
Investigation on Bowtie Antennas Operating at Very Low Frequencies for Ground Penetrating Radar
(2023)
The efficiency of Ground Penetrating Radar (GPR) systems significantly depends on the antenna performance as the signal has to propagate through lossy and inhomogeneous media. GPR antennas should have a low operating frequency for greater penetration depth, high gain and efficiency to increase the receiving power and should be compact and lightweight for ease of GPR surveying. In this paper, two different designs of Bowtie antennas operating at very low frequencies are proposed and analyzed.