Refine
Year of publication
Document Type
- Conference Proceeding (71)
- Article (reviewed) (15)
- Patent (12)
- Contribution to a Periodical (8)
- Article (unreviewed) (2)
Conference Type
- Konferenz-Abstract (55)
- Konferenzartikel (12)
- Konferenz-Poster (4)
Language
- English (81)
- German (25)
- Other language (1)
- Multiple languages (1)
Is part of the Bibliography
- yes (108)
Keywords
- CST (7)
- HF-Ablation (7)
- CRT (6)
- Herzrhythmusmodell (6)
- Heart rhythm model (5)
- Herzkrankheit (5)
- Modeling and simulation (5)
- Kardiale Resynchronisationstherapie (4)
- Synchronisierung (4)
- heart rhythm model (4)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (76)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (29)
- POIM - Peter Osypka Institute of Medical Engineering (12)
- CRT - Campus Research & Transfer (2)
- Zentrale Einrichtungen (2)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (1)
Open Access
- Open Access (71)
- Closed Access (29)
- Bronze (5)
- Closed (2)
Cardiac resynchronization therapy (CRT) with biventricular (BV) pacing is an established therapy in approximately two-thirds of symptomatic heart failure (HF) patients (P) with left bundle branch block (LBBB). The aim of this study was to evaluate left atrial (LA) conduction delay (LACD) and left ventricular (LV) conduction delay (LVCD) using pre-implantational transesophageal electrocardiography (ECG) in sinus rhythm (SR) CRT responder (R) and non-responder (NR).
Methods: SR HF P (n=52, age 63.6±10.4 years; 6 females, 46 males) with New York Heart Association (NYHA) class 3.0±0.2, 24.4±7.1 % LV ejection fraction and 171.2±37.6 ms QRS duration (QRSD) were measured by bipolar filtered transesophageal LA and LV ECG recording with hemispherical electrodes (HE) TO catheter (Osypka AG, Rheinfelden, Germany). LACD was measured between onset of P-wave in the surface ECG and onset of LA deflection in the LA ECG. LVCD was measured between onset of QRS in the surface ECG and onset of LV deflection in the LV ECG.
Results: There were 78.8 % SR CRT R (n=41) with 171.2±36.9 ms QRSD, 73.3±25.7 ms LACD, 80.0±24.0 ms LVCD and 2.3±0.5 QRSD-LVCD-ratio. SR CRT R QRSD correlated with LACD (r=0.688, P<0.001) and LVCD (r=0.699, P<0.001). There were 21.2 % SR CRT NR (n=11) with 153.4±22.4 ms QRSD (P=0.133), 69.8±24.8 ms LACD (n=6, P=0.767), 54.2±31.0 ms LVCD (P<0.0046) and 3.9±2.5 QRSD-LVCD-ratio (P<0.001). SR CRT NR QRSD not corre-lated with IACD (r=-0.218, P=0.678) and IVCD (r=0.042, P=0.903). During a 22.8±21.3 month CRT follow-up, the CRT R NYHA class improved from 3.1±0.3 to 1.9±0.3 (P<0.001). In CRT NR, NYHA class not improved (2.9±0.4 to 2.9±0.2, P=1) during 11.2±9.8 months BV pacing.
Conclusions: Transesophageal LA and LV ECG with HE can be utilized to analyse LACD and LVCD in HF P. Pre-implantational LVCD and QRSD-LVCD-ratio may be additional useful parameters to improve P selection for SR CRT.
Introduction: Cardiac resynchronization therapy (CRT) with biventricular pacing (BV) is an established therapy for heart failure (HF) patients (P) with ventricular desynchronisation, but not all patients improved clinically. Aim of this study was to evaluate electrical intra-left ventricular conduction delay (LVCD) and interventricular conduction delay (IVCD), to better select patients for CRT.
Methods: 65 HF patients (age 63.4 ± 10.6 years; 7 females, 58 males) with New York Heart Association (NYHA) class 3 ± 0.2, 24.4 ± 6.7 % left ventricular (LV) ejection fraction and 167.4 ± 35.6 ms QRSD were included. Esophageal TO Osypka focused hemispherical electrodes catheter was perorally applied in position of maximum LV deflection to measure LVCD between onset and offset of LV deflection and IVCD between earliest onset of QRS in the 12-channel surface ECG and onset of LV deflection in the focused bipolar transesophageal LV electrogram.
Results: There were 50 responders with LVCD of 76.5 ± 20.4 ms, IVCD of 80.5 ± 26.1 ms (P=0.34) and QRSD of 171 ± 37.7 ms. 15 non-responders had longer LVCD of 90 ± 28.5 ms (P = 0.045), shorter IVCD of 50.1 ± 29.1 ms (P < 0.001) and QRSD of 155.3 ± 25 ms (P=0.14). During 21.3 ± 20.3 month BV pacing follow-up, the responder`s NYHA classes improved from 3 ± 0.2 to 2. ± 0.3 (P < 0.001) whereas the non-responders NYHA classes did not improve from 3 ± 0.2 to 2.9 ± 0.3 (P = 0.43) during 15.7 ± 13.9 month BV pacing follow-up (53 Boston, 10 Medtronic and 2 St. Jude CRT devices).
Conclusion: Determination of electrical LVCD and IVCD by focused bipolar transesophageal LV electrogram recording may be an additional useful technique to improve patient selection for CRT.
Termination of atrial flutter (AFL) is not possible in all AFL patients (P) with transesophageal left atrial pacing (TLAP) with undirected electrical pacing field (EPF) and high atrial pacing threshold. Purpose of the study was to evaluate bipo-lar transesophageal left atrial electrocardiography (TLAE) and TLAP with directed EPF for evaluation and termination of AFL with and without simultaneous transesophageal echocardiography (TEE).
Methods: AFL P were analysed using either a TO electrode with one cylindrical (CE) and three or seven hemispherical electrodes (HE) or TEE electrode with four HE (Osypka, Rheinfelden, Germany). Burst TLAP cycle length was between 200msand 50ms.
Results: AFL cycle length was 233±30 ms with mean ventricular cycle length of 540±149 ms. AFL could be terminated by rapid bipolar TLAP with directed EPF using HE-HE and CE-HE with induction of atrial fibrillation (AF), induction of AF and spontaneous conversion to sinus rhythm and direct conversion to sinus rhythm. Directed EPF was simulated with finite element method.
Conclusions: AFL can be evaluated by bipolar TLAE. AFL can be terminated with rapid TLAP with directed EPF with and without simultaneous TEE. Bipolar TLAE with rapid TLAP is a safe, simple and useful method for evaluation and termination of AFL.
Cardiac resynchronisation therapy (CRT) with biventricular pacing (BV) is an established therapy for heart failure (HF) patients with interventricular conduction delay (IVCD). The aim of the study was to evaluate transesophageal IVCD and left ventricular (LV) pacing with directed electrical pacing field (EPF) in HF patients.
Methods: HF patients were analysed with bipolar transesophageal LV electrocardiogram recording and LV pacing with constant voltage stimulus output, 4 ms stimulus duration, distal cylindrical electrode (CE) and seven 6 mm hemispherical electrodes (HE) with 15 mm electrode distance (TO, Dr. Osypka, Rheinfelden, Germany).
Results: LV electrocardiogram recording with HE-HE and CE-HE evaluated a mean IVCD of 79.9 ± 36.7 ms. Directed EPF with CE-HE and HE-HE allowed LV VAT (n=12) and LV D00 pacing (n=5) with a mean effective capture output of 97.35 ± 6.64 V. In 15 responders with IVCD of 87 ± 33 ms arterial pulse pressure (PP) increased from 65 ± 24 mmHg to 79 ± 27 mmHg (p < 0.001). EPF was simulated with finite element method.
Conclusions: Transesophageal LV electrocardiography and directed EPF pacing with CE and HE allowed the evaluation of IVCD and PP to select patients for BV pacing.
Introduction: Cardiac resynchronization therapy (CRT) with left ventricular (LV) pacing is an established therapy for heart failure (HF) patients (P) with ventricular desynchronisation and reduced LV ejection fraction (EF). The aim of this study was to test the utilization of the transesophageal approach to measure arterial pulse pressure (PP) during LV pacing and electrical interventricular conduction delay (IVCD), to better select patients for CRT.
Methods: 32 HF patients (age 64 ± 10 years; 5 females, 27 males) with New York Heart Association (NYHA) class 2.8 ± 0.6, 27 ± 11 % LV EF and 155 ± 35 ms QRS duration were analysed with semi-invasive left cardiac pacing and electrocardiography. Esophageal TO8 Osypka catheter of 10.5 F diameter was perorally applied to the esophagus and placed in the position of maximum left atrial (LA) deflection and maximum LV deflection to measure PP with VAT or D00 pacing modes.
Results: Temporary transesophageal LV pacing was possible with VAT mode (n=16) and D00 mode (n=16) in all patients. In 15 Δ-PP-responders, PP was higher during LV pacing on than LV pacing off (78.3 ± 26.6 versus 65.9 ± 23.7 mmHg, P < 0.001) and NYHA class improved from 3.1 ± 0.35 to 2.1 ± 0.35 (P < 0.001) during 29 ± 26 month biventricular (BV) pacing follow-up (6 Medtronic and 9 Boston BV pacing devices). In 17 Δ-PP-non-responders, PP was not higher during LV pacing on than LV pacing off (61.5 ± 23.9 versus 60.9 ± 23.5 mmHg, P = 0.066). IVCD was significant longer in Δ-PP-responders than in Δ-PP-non-responders (87 ± 33 ms versus 37± 29 ms, P < 0.001).
Conclusion: Semi-invasive transesophageale LA and LV pacing with D00 and VAT mode and LV electrogram recording may be useful techniques to predict CRT improvement.
Capture threshold (CT) for transesophageal left atrial (LA) pacing (TLAP) and transesophageal left ventricular (LV) pacing (TLVP) with conventional cylindrical electrodes (CE) are higher than TLAP feeling threshold (FT). Purpose of the study was to evaluate focused TLAP CT and FT for supraventricular tachycardia (SVT) initiation and focused TLVP CT for cardiac resynchronisation therapy (CRT) simulation.
Methods: SVT initiation in patients (P) with palpitations (n=49, age 47 ± 17 years) was analysed during spontaneous rhythm and during focused bipolar TLAP with atrial constant current stimulus output, distal CE and three or seven 6 mm hemispherical electrodes (HE) (TO, Osypka AG, Rheinfelden, Germany). CRT simulation in heart failure P (n=75, age 62 ± 11 years) was evaluated by focused bipolar TLAP and/or TLVP with ventricular constant voltage stimulus output and different pacing mode.
Results: Focused electrical pacing field between CE and HE (n=28) allowed low threshold TLAP with 8.0 ± 2.6 mA CT at 9.9 ms stimulus duration (SD) which was lower than 9.2 ± 4.5 mA FT at 9.9 ms SD. Focused electrical pacing field between HE and HE (n=21) allowed low threshold TLAP with 8.1 ± 2.2 mA CT at 9.9 ms SD which was lower than 9.8 ± 5.0 mA FT at 9.9 ms SD. SVT initiation by programmed AAI TLAP was possible in 23 P and not possible in 26 P. CRT simulation was evaluated with TLAP and TLVP with VAT, D00 and V00 pacing mode and 95.5 ± 10.9 V TLVP CT at 4.0 ms SD.
Conclusions: Programmed focused AAI TLAP allowed initiation of SVT with very low CT and high FT and focused electrical pacing field between CE-HE and HE-HE.CRT simulation with focused TLAP and/or TLVP with VAT, D00 and V00 pacing mode may be a useful technique to detect responders to CRT.
Cardiac resynchronization therapy (CRT) with hemodynamic optimized biventricular pacing is an established therapy for heart failure patients with sinus rhythm, reduced left ventricular ejection fraction and wide QRS complex. The aim of the study was to evaluate electrical right and left cardiac atrioventricular delay and left atrial delay in CRT responder and non-responder with sinus rhythm.
Methods: Heart failure patients with New York Heart Association class 3.0 ± 0.3, sinus rhythm and 27.7 ± 6.1% left ventricular ejection fraction were measured by surface ECG and transesophageal bipolar left atrial and left ventricular ECG before implantation of CRT devices. Electrical right cardiac atrioventricular delay was measured between onset of P wave and onset of QRS complex in the surface ECG, left cardiac atrioventricular delay between onset of left atrial signal and onset of left ventricular signal in the transesophageal ECG and left atrial delay between onset and offset of left atrial signal in the transesophageal ECG.
Results: Electrical atrioventricular and left atrial delay were 196.9 ± 38.7 ms right and 194.5 ± 44.9 ms left cardiac atrioventricular delay, and 47.7 ± 13.9 ms left atrial delay. There were positive correlation between right and left cardiac atrioventricular delay (r = 0.803 P < 0.001) and negative correlation between left atrial delay and left ventricular ejection fraction (r = −0.694 P = 0.026) with 67% CRT responder.
Conclusions: Transesophageal electrical left cardiac atrioventricular delay and left atrial delay may be useful preoperative atrial desynchronization parameters to improve CRT optimization.
Cardiac resynchronization therapy is an established therapy for heart failure patients. The aim of the study was to evaluate electrical left cardiac atrioventricular delay and interventricular desynchronization in sinus rhythm cardiac resynchronization therapy responder and non-responder. Cardiac electrical desynchronization were measured by surface ECG and focused transesophageal bipolar left atrial and left ventricular ECG before implantation of cardiac resynchronization therapy defibrillators. Preoperative electrical cardiac desynchronization was 195.7 ± 46.7 ms left cardiac atrioventricular delay and 74.8 ± 24.5 ms interventricular delay in cardiac resynchronization therapy responder. Cardiac resynchronization therapy responder New York Heart Association class improved during long term biventricular pacing. Transesophageal left cardiac atrioventricular delay and interventricular delay may be additional useful parameters to improve patient selection for cardiac resynchronization therapy.
Cardiac resynchronization therapy (CRT) is an established biventricular pacing therapy in heart failure patients with left bundle branch block and reduced left ventricular ejection fraction, but not all patients improved clinically as CRT responder. Purpose of the study was to evaluate electrical left atrial conduction delay (LACD) with focused transesophageal electrocardiography in CRT responder and CRT non-responder.
Methods: Twenty heart failure patients (age 66.6±8.2 years; 2 females, 18 males) with New York Heart Association functional class 3.0±0.3 and 174.2±40.2ms QRS duration were analysed using posterior left atrial transesophageal electrocardiography with hemispherical electrodes. Electrical LACD was measured between onset and offset of transesophageal left atrial signal before implantation of CRT devices.
Results: Electrical LACD could be evaluated by bipolar transesophageal left atrial electrocardiography using TO Osypka electrode in all heart failure patients with negative correlation between 54.7±18.1ms LACD and 24.9±6.4% left ventricular ejection fraction (r=-0.65, P=0.002). There were 16 CRT responders with reduction of New York Heart Association functional class from 3.0±0.29 to 2.1±0.2 (r=0.522, P=0.038) during 9.41±10.96 month biventricular pacing and negative correlation between 49.6±14.2ms LACD and 26.0±6.2% left ventricular ejection fraction (r=-0.533, P=0.034). There were 4 CRT non-responders with no reduction of New York Heart Association functional class from 3.0±0.4 to 2.8±0.5 (r=0.816, P=0.184) during with 13.88±16.39 month biventricular pacing and no correlation between 75.25±19.17ms LACD and 20.75±6.4% left ventricular ejection fraction (r=-0.831, P=0.169).
Conclusions: Focused transesophageal left atrial electrocardiography can be utilized to analyse electrical LACD in heart failure patients. LACD correlated negative with left ventricular ejection fraction in CRT responders. LACD may be a useful parameter to evaluate electrical left atrial desynchronization in heart failure patients.
Cardiac resynchronization therapy (CRT) is an established class I level A biventricular pacing therapy in chronic heart failure patients with left bundle branch block and reduced left ventricular ejection fraction, but not all patients improved clinically. Purpose of the study was to evaluate electrical interatrial conduction delay (IACD) to interventricular conduction delay (IVCD) ratio with focused transesophageal left atrial and left ventricular electrocardiography.
Methods: Thirty eight chronic heart failure patients (age 63.4±10.2 years; 3 females, 35 males) with New York Heart Association (NYHA) functional class 3.0±0.2 and 171.71±36.17ms QRS duration were analysed using posterior left atrial and left ventricular transesophageal electrocardiography with hemispherical electrodes before CRT. Electrical IACD was measured between onset of P-wave in the surface ECG and onset of left atrial signal. Electrical IVCD was measured between onset of QRS complex in the surface ECG and onset of left ventricular signal.
Results: Electrical IACD and IVCD could be evaluated by transesophageal left atrial and left ventricular electrocardiography in all heart failure patients with correlation to 1.18±0.92 IACD-IVCD-ratio (r=-0.57, P<0.001; r=0.66, P<0.001). There were 32 CRT responder with reduction of NYHA class from 3.0±0.22 to 1.97±0.31 (P<0.001) during 16.5±18.9 month CRT with 75.19±33.49ms IACD, 78.91±24.73ms IVCD, 1.04±0.66 IACD-IVCD-ratio and correlation between IACD and IACDIVCD- ratio (r=0.84, P<0.001). There were 6 CRT nonresponder with no reduction of NYHA class from 3.0±0.3 to 2.9±0.5 during 14.3±13.7 month biventricular pacing, 50.0±28.26ms IVCD (P=0.014), 1.92±1.65 IACD-IVCD-ratio (P=0,029) and correlation between 67.0±24.9ms IACD and IACD-IVCD-ratio (r=0.85, P=0.031).
Conclusions: Focused transesophageal left atrial and left ventricular electrocardiography can be utilized to analyse electrical IACD and IVCD in heart failure patients. IACDIVDC- ratio may be a useful parameter to evaluate electrical left cardiac desynchronization in heart failure patients.