Refine
Document Type
Conference Type
- Konferenzartikel (3)
Is part of the Bibliography
- yes (12)
Keywords
- Medizintechnik (3)
- Angewandte Forschung (1)
- Antenne (1)
- Applikation (1)
- Bioelement (1)
- Biomedizin (1)
- FEM model (1)
- Formale Beschreibung (1)
- Integrierte Schaltung (1)
- Kleintiere (1)
Institute
Open Access
- Open Access (8)
- Closed (2)
- Closed Access (2)
- Bronze (1)
- Diamond (1)
- Gold (1)
Das Institut für Angewandte Forschung arbeitet seit Jahren an RFID-Applikationen unter Verwendung des Protokolls nach ISO15693-Standard. Wir entwickeln in dem Zusammenhang sowohl Frontendelektronik als auch Reader, die es ermöglichen, diese Tags auszulesen. Projekte der vergangenen Jahre waren sowohl SEAGsens als auch medizintechnische Anwendungen unterschiedlichster Art.
Formal Description of Inductive Air Interfaces Using Thévenin's Theorem and Numerical Analysis
(2014)
With the development of new integrated circuits to interface radio frequency identification protocols, inductive air interfaces have become more and more important. Near field communication is not only able to communicate, but also possible to transfer power wirelessly and to build up passive devices for logistical and medical applications. In this way, the power management on the transponder becomes more and more relevant. A designer has to optimize power consumption as well as energy harvesting from the magnetic field. This paper discusses a model with simple equations to improve transponder antenna matching. Furthermore, a new numerical analysis technique is presented to calculate the coupling factors, inductions, and magnetic fields of multiantenna systems.
In this paper an RFID/NFC (ISO 15693 standard) based inductively powered passive SoC (system on chip) for biomedical applications is presented. A brief overview of the system design, layout techniques and verification method is dis-cussed here. The SoC includes an integrated 32 bit microcontroller, sensor interface circuit, analog to digital converter, integrated RAM, ROM and some other peripherals required for the complete passive operation. The entire chip is realized in CMOS 0.18 μm technology with a chip area of 1.52mm x 3.24 mm.
An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 μm CMOS Technology for Passive Tag Applications
(2018)
Battery-less passive sensor tags based on RFID or NFC technology have achieved much popularity in recent times. Passive tags are widely used for various applications like inventory control or in biotelemetry. In this paper, we present a new RFID/NFC frontend IC (integrated circuit) for 13.56 MHz passive tag applications. The design of the frontend IC is compatible with the standard ISO 15693/NFC 5. The paper discusses the analog design part in details with a brief overview of the digital interface and some of the critical measured parameters. A novel approach is adopted for the demodulator design, to demodulate the 10% ASK (amplitude shift keying) signal. The demodulator circuit consists of a comparator designed with a preset offset voltage. The comparator circuit design is discussed in detail. The power consumption of the bandgap reference circuit is used as the load for the envelope detection of the ASK modulated signal. The sub-threshold operation and low-supply-voltage are used extensively in the analog design—to keep the power consumption low. The IC was fabricated using 0.18 μm CMOS technology in a die area of 1.5 mm × 1.5 mm and an effective area of 0.7 mm2. The minimum supply voltage desired is 1.2 V, for which the total power consumption is 107 μW. The analog part of the design consumes only 36 μW, which is low in comparison to other contemporary passive tags ICs. Eventually, a passive tag is developed using the frontend IC, a microcontroller, a temperature and a pressure sensor. A smart NFC device is used to readout the sensor data from the tag employing an Android-based application software. The measurement results demonstrate the full passive operational capability. The IC is suitable for low-power and low-cost industrial or biomedical battery-less sensor applications. A figure-of-merit (FOM) is proposed in this paper which is taken as a reference for comparison with other related state-of-the-art researches.
Design of a Programmable Passive SoC for Biomedical Applications Using RFID ISO 15693/NFC5 Interface
(2018)
Low power, low cost inductively powered passive biotelemetry system involving fully customized RFID/NFC interface base SoC has gained popularity in the last decades. However, most of the SoCs developed are application specific and lacks either on-chip computational or sensor readout capability. In this paper, we present design details of a programmable passive SoC in compliance with ISO 15693/NFC5 standard for biomedical applications. The integrated system consists of a 32-bit microcontroller, a sensor readout circuit, a 12-bit SAR type ADC, 16 kB RAM, 16 kB ROM and other digital peripherals. The design is implemented in a 0.18 µm CMOS technology and used a die area of 1.52 mm × 3.24 mm. The simulated maximum power consumption of the analog block is 592 µW. The number of external components required by the SoC is limited to an external memory device, sensors, antenna and some passive components. The external memory device contains the application specific firmware. Based on the application, the firmware can be modified accordingly. The SoC design is suitable for medical implants to measure physiological parameters like temperature, pressure or ECG. As an application example, the authors have proposed a bioimplant to measure arterial blood pressure for patients suffering from Peripheral Artery Disease (PAD).
Mice and rats make up 95% of all animals used in medical research and drug discovery and development. Monitoring of physiological functions such as ECG, blood pressure, and body temperature over the entire period of an experiment is often required. Restraining of the animals in order to obtain this data can cause great inconvenience. The use of telemetric systems solves this problem and provides more reliable results. However, these devices are mostly equipped with batteries, which limit the time of operation or they use passive power supplies, which affects the operating range. The semi-passive telemetric implant being presented is based on RFID technology and overcomes these obstacles. The device is inductively powered using the magnetic field of a common RFID reader device underneath the cage, but is also able to operate for several hours autonomously. Being independent from the battery capacity, it is possible to use the implant over a long period of time or to re-use the device several times in different animals, thus avoiding the disadvantages of existing systems and reducing the costs of purchase and refurbishment.
Ultra-low-power passive telemetry systems for industrial and biomedical applications have gained much popularity lately. The reduction of the power consumption and size of the circuits poses critical challenges in ultra-low-power circuit design. Biotelemetry applications like leakage detection in silicone breast implants require low-power-consuming small-size electronics. In this doctoral thesis, the design, simulation, and measurement of a programmable mixed-signal System-on-Chip (SoC) called General Application Passive Sensor Integrated Circuit (GAPSIC) is presented. Owing to the low power consumption, GAPSIC is capable of completely passive operation. Such a batteryless passive system has lower maintenance complexity and is also free from battery-related health hazards. With a die area of 4.92 mm² and a maximum analog power consumption of 592 µW, GAPSIC has one of the best figure-of-merits compared to similar state-of-the-art SoCs. Regarding possible applications, GAPSIC can read out and digitally transmit the signals of resistive sensors for pressure or temperature measurements. Additionally, GAPSIC can measure electrocardiogram (ECG) signals and conductivity.
The design of GAPSIC complies with the International Organization for Standardization (ISO) 15693/NFC (near field communication) 5 standard for radio frequency identification (RFID), corresponding to the frequency range of 13.56 MHz. A passive transponder developed with GAPSIC comprises of an external memory storage and very few other external components, like an antenna and sensors. The passive tag antenna and reader antenna use inductive coupling for communication and energy transfer, which enables passive operation. A passive tag developed with GAPSIC can communicate with an NFC compatible smart device or an ISO 15693 RFID reader. An external memory storage contains the programmable application-specific firmware.
As a mixed-signal SoC, GAPSIC includes both analog and digital circuitries. The analog block of GAPSIC includes a power management unit, an RFID/NFC communication unit, and a sensor readout unit. The digital block includes an integrated 32-bit microcontroller, developed by the Hochschule Offenburg ASIC design center, and digital peripherals. A 16-kilobyte random-access memory and a read-only 16-kilobyte memory constitute the GAPSIC internal memory. For the fabrication of GAPSIC, one poly, six-metal 0.18 µm CMOS process is used.
The design of GAPSIC includes two stages. In the first stage, a standalone RFID/NFC frontend chip with a power management unit, an RFID/NFC communication unit, a clock regenerator unit, and a field detector unit was designed. In the second stage, the rest of the functional blocks were integrated with the blocks of the RFID/NFC frontend chip for the final integration of GAPSIC. To reduce the power consumption, conventional low-power design techniques were applied extensively like multiple power supplies, and the operation of complementary metal-oxide-semiconductor (CMOS) transistors in the sub-threshold region of operation, as well as further innovative circuit designs.
An overvoltage protection circuit, a power rectifier, a bandgap reference circuit, and two low-dropout (LDO) voltage regulators constitute the power management unit of GAPSIC. The overvoltage protection circuit uses a novel method where three stacked transistor pairs shunt the extra voltage. In the power rectifier, four rectifier units are arranged in parallel, which is a unique approach. The four parallel rectifier units provide the optimal choice in terms of voltage drop and the area required.
The communication unit is responsible for RFID/NFC communication and incorporates demodulation and load modulation circuitry. The demodulator circuit comprises of an envelope detector, a high-pass filter, and a comparator. Following a new approach, the bandgap reference circuit itself acts as the load for the envelope detector circuit, which minimizes the circuit complexity and area. For the communication between the reader and the RFID/NFC tag, amplitude-shift keying (ASK) is used to modulate signals, where the smallest modulation index can be as low as 10%. A novel technique involving a comparator with a preset offset voltage effectively demodulates the ASK signal. With an effective die area of 0.7 mm² and power consumption of 107 µW, the standalone RFID/NFC frontend chip has the best figure-of-merits compared to the state-of-the-art frontend chips reported in the relevant literature. A passive RFID/NFC tag developed with the standalone frontend chip, as well as temperature and pressure sensors demonstrate the full passive operational capability of the frontend chip. An NFC reader device using a custom-built Android-based application software reads out the sensor data from the passive tag.
The sensor readout circuit consists of a channel selector with two differential and four single-ended inputs with a programmable-gain instrumentation amplifier. The entire sensor readout part remains deactivated when not in use. The internal memory stores the measured offset voltage of the instrumentation amplifier, where a firmware code removes the offset voltage from the measured sensor signal. A 12-bit successive approximation register (SAR) type analog-to-digital-converter (ADC) based on a charge redistribution architecture converts the measured sensor data to a digital value. The digital peripherals include a serial peripheral interface, four timers, RFID/NFC interfaces, sensor readout unit interfaces, and 12-bit SAR logic.
Two sets of studies with custom-made NFC tag antennas for biomedical applications were conducted to ascertain their compatibility with GAPSIC. The first study involved the link efficiency measurements of NFC tag antennas and an NFC reader antenna with porcine tissue. In a separate experiment, the effect of a ferrite compared to air core on the antenna-coupling factor was investigated. With the ferrite core, the coupling factor increased by four times.
Among the state-of-the-art SoCs published in recent scientific articles, GAPSIC is the only passive programmable SoC with a power management unit, an RFID/NFC communication interface, a sensor readout circuit, a 12-bit SAR ADC, and an integrated 32-bit microcontroller. This doctoral research includes the preliminary study of three passive RFID tags designed with discrete components for biomedical and industrial applications like measurements of temperature, pH, conductivity, and oxygen concentration, along with leakage detection in silicone breast implants. Besides its small size and low power consumption, GAPSIC is suitable for each of the biomedical and industrial applications mentioned above due to the integrated high-performance microcontroller, the robust programmable instrumentation amplifier, and the 12-bit analog-to-digital converter. Furthermore, the simulation and measurement data show that GAPSIC is well suited for the design of a passive tag to monitor arterial blood pressure in patients experiencing Peripheral Artery Disease (PAD), which is proposed in this doctoral thesis as an exemplary application of the developed system.
The growing demand for active medical implantable devices requires data and or power links between the implant and the outside world. Every implant has to be encapsulated from the body by a specific housing and one of the most common materials used is titanium or titanium alloy. Titanium thas the necessary properties in terms of mechanical and chemical stability and biocompatibility. However, its electrical conductivity presents a challenge for the electromagnetic transmission of data and power. The proposed paper presents a fast and practical method to determine the necessary transmission parameters for titanium encapsulated implants. Therefore, the basic transformer-transmission-model is used with measured or calculated key values for the inductances. Those are then expanded with correction factors to determine the behavior with the encapsulation. The correction factors are extracted from finite element method simulations. These also enable the analysis of the magnetic field distribution inside of the housing. The simulated transmission properties are very close to the measured values. Additionally, based on lumped elements and magnetic field distribution, the influential parameters are discussed in the paper. The parameter discussion describes how to enhance the transmitted power, data-rate or distance, or to reduce the size of the necessary coils. Finally, an example application demonstrates the usage of the methods.