Refine
Document Type
- Article (reviewed) (3)
- Report (2)
- Conference Proceeding (1)
Conference Type
- Konferenzartikel (1)
Is part of the Bibliography
- yes (6)
Keywords
- Wärmepumpe (3)
- Energietechnik (1)
- Energiewende (1)
- General Energy (1)
- Heat pumps (1)
- Heizungstechnik (1)
- Wärmepumpen (1)
Institute
Open Access
- Open Access (5)
- Bronze (2)
- Gold (2)
- Closed (1)
- Hybrid (1)
A smart energy concept was designed and implemented for a cluster of 5 existing multi-family houses, which combines heat pumps, photovoltaic (PV) modules and combined heat and power units (CHP) to achieve energy- and cost-efficient operation. Measurement results of the first year of operation show that the local power generation by PV modules and CHP unit has a positive effect on the electrical self-sufficiency by reducing electricity import from the grid. In winter, when the CHP unit operates continuously for long periods, the entire electricity for the heat pump and 91 % of the total electricity demand of the neighborhood are supplied locally. In summer, only 53 % is generated within the neighborhood. The use of a specifically developed energy management system EMS is intended to further increase this share. CO2 emissions for heating and electricity of the neighborhood are evaluated and amount to 18.4 kg/(m2a). Compared to the previous energy system consisting of gas boilers (29.1 kg/(m2a)), savings of 37 % are achieved with electricity consumption from the grid being reduced by 65 %. In the second construction stage, an additional heat pump, CHP unit and PV modules will be added. The measurement results indicate that the final district energy system is likely to achieve the ambitious CO2 reduction goal of -50% and further increase the self-sufficiency of the district.
Der prozentuale Energieaufwand für die Warmwasserbereitung ist umso höher, je geringer der Bedarf an Raumwärme – erreicht durch besser gedämmte Gebäudehüllen – ist. Gleichzeitig kann dieser Aufwand für Warmwasser aufgrund der normativ geforderten Systemtemperaturen von 60/55 °C bei zentraler Warmwasserbereitung über Wärmepumpen nur vergleichsweise energieaufwendig abgedeckt werden. Eine Studie des Fraunhofer ISE zeigt, wie groß dieser Temperatur-Effekt im Vergleich unterschiedlicher Trinkwasser-Erwärmungssysteme ist.
LowEx-Konzepte für die Wärmeversorgung von Mehrfamilien-Bestandsgebäuden ("LowEx-Bestand Analyse")
(2023)
Der vorliegende Abschlussbericht fasst die Ergebnisse der wissenschaftlichen Querspange »LowEx-Bestand Analyse« des thematischen Projektverbunds »LowEx-Konzepte für die Wärmeversorgung von Mehrfamilien-Bestandsgebäuden (LowEx-Bestand)« zusammen. In diesem Verbund arbeiteten drei Forschungsinstitute mit Herstellern von Heizungs- und Lüftungstechnik und mit Unternehmen der Wohnungswirtschaft zusammen. Gemeinsam wurden Lösungen entwickelt, analysiert und demonstriert, die den effizienten Einsatz von Wärmepumpen, Wärmeübergabesystemen und Lüftungssystemen bei der energetischen Modernisierung von Mehrfamiliengebäuden zum Ziel haben. LowEx-Systeme arbeiten durch geringe Temperaturdifferenzen zwischen Heizmedium und Nutzwärmebesonders effizient. Wärmepumpen haben dabei erhebliches Potenzial zur Absenkung der spezifischen CO2-Emissionen bei der Wärmebereitstellung. Für die energetische Modernisierung von Mehrfamiliengebäuden ist der Einsatz solcher Systeme mit besonderen Herausforderungen und Anforderungen an die Übergabe der Raumwärme, die Warmwasserbereitung und die Nutzung von Umweltwärme verbunden. Diese Herausforderungen werden in LowEx-Bestand adressiert.
Heat pumps play a central role in decarbonizing the heat supply of buildings. However, in this article, implementing heat pumps in existing buildings, a significant challenge is still presented due to high temperature requirements. In this article, a systematic analysis of the effects of heat source temperatures, maximum heat pump condenser temperatures, and system temperatures on the seasonal performance of heat pump (HP) systems is presented. The quantitative performance analysis encompasses over 50 heat pumps installed in residential buildings, revealing correlations between the building characteristics, observed temperatures, and heat pump type. The performance of an HP system retrofitted to a 30-dwelling multifamily building is presented in more detail. The bivalent HP system combines air and ground as heat sources and achieves a seasonal performance factor of 3.25 with a share of the gas boiler of 27% in its first year of operation. In these findings, the technical feasibility of retrofitting heat pumps is demonstrated in existing buildings and insights are provided into overcoming the challenges associated with high temperature requirements.
The building sector is accountable for roughly one third of global energy- and process-related greenhouse gas emissions. Besides space heating, domestic hot water (DHW) heating contributes substantially to energy consumption and related greenhouse gas emissions in the building sector. Depending on the DHW system design and its required supply temperature, heat losses make up around 30…60 % of the energy required for DHW heating. To decrease energy consumption and reduce associated greenhouse gas emissions, it is essential to minimize heat losses and implement efficient DHW concepts. Heat pumps can potentially reduce energy consumption, but their efficiency strongly depends on the DHW system design and its required supply temperature. These aspects are evaluated by performing a comprehensive analysis of different DHW concepts utilizing heat pumps. Based on annual heat demands extracted from one year measurement data of a typical multi-family house in Germany, simulations of six different DHW concepts are performed. Our findings reveal that decentralized DHW systems or low system temperatures (48 °C), e.g. in combination with ultrafiltration for legionella treatment in centralized DHW systems, can lead to a substantial reduction in heat losses for DHW preparation of around 25 % and in final energy of 20 % compared to the reference case. In large systems the share of losses should be kept below 30 % by reducing pipe lengths and equipping the most distant tapping points with direct electric water heaters.