Refine
Year of publication
Document Type
- Conference Proceeding (19)
- Article (reviewed) (11)
- Report (5)
- Part of a Book (3)
- Book (2)
- Contribution to a Periodical (2)
Conference Type
- Konferenzartikel (17)
- Konferenz-Abstract (1)
- Sonstiges (1)
Is part of the Bibliography
- yes (42)
Keywords
- Demand side flexibility (2)
- Digitalization (2)
- Energie (2)
- Energiemarkt (2)
- Energy Flexibility (2)
- Energy Management (2)
- Energy systems modeling (2)
- MPC (2)
- Optimization and control (2)
- Umweltforschung (2)
Institute
- INES - Institut für nachhaltige Energiesysteme (26)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (20)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (20)
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (6)
- CRT - Campus Research & Transfer (2)
- Zentrale Einrichtungen (2)
- Fakultät Medien (M) (ab 22.04.2021) (1)
- Fakultät Medien und Informationswesen (M+I) (bis 21.04.2021) (1)
Open Access
- Open Access (18)
- Closed Access (13)
- Closed (8)
- Bronze (5)
- Diamond (3)
- Gold (2)
This paper describes the Sweaty II humanoid adult size robot trying to qualify for the RoboCup 2018 adult size humanoid competition. Sweaty came 2nd in RoboCup 2017 adult size league. The main characteristics of Sweaty are described in the Team Description Paper 2017. The improvements that have been made or are planned to be implemented for RoboCup 2018 are described in this paper.
GaIN - Gewinnbringende Partizipation der mittelständischen Industrie am Energiemarkt der Zukunft
(2024)
Der vorliegende Bericht dokumentiert die Arbeiten und Ergebnisse des Forschungsprojekts GaIN – Gewinnbringende Partizipation der mittelständischen Industrie am Energiemarkt der Zukunft (Laufzeit 01.12.2019 bis 30.11.2022), das vom Bundesministerium für Wirtschaft und Klimaschutz „BMWK“ unter den Kennzeichen 03EI6019E gefördert wurde.
Das Ziel des Projektes bestand darin, durch die Digitalisierung der (mittelständischen) Industrie die Unternehmen zu befähigen aktiv gewinnbringend am volatilen Energiemarkt der Zukunft zu partizipieren.
Am Institut für Angewandte Forschung wird seit Jahren eine Mikroprozessorfamilie unter dem Kurznamen SIRIUS entwickelt, die inzwischen in verschiedenen Applikationen eingesetzt wird und in hohem Maß nun auch kommerziell interessant wird. Im Mittelpunkt der Arbeiten des letzten Jahrs stand die Ausreifung der Strukturen, wobei zum erstenMal auf Benchmarks zurückgegriffen werden konnte, die einen direkten Vergleich der Leistungsfähigkeit von Prozessoren ermöglicht. Als Benchmark wurde in einer Master-Arbeit von Herrn Roth der Core-Mark Benchmark für unsere SIRIUS-Architektur übersetzt, der einen direkten Vergleich mit sehr leistungsfähigen Boliden wie der ARM-Cortex-Architektur aber auch klassischen kommerziellen Produkten von Renesas wie auch von ATMEL ermöglicht.
In dem durchgeführten Verbundvorhaben arbeiteten zum einen die Fachgebiete Geologie/Geothermie sowie Anlagen- und Systemtechnik von geothermischer Kältegewinnung und Kältenutzung der Projektpartner interdisziplinär zusammen, um den aktuellen Wissensstand der Kühlung mittels oberflächennaher Geothermie fachübergreifend zu erfassen, zu bewerten und Schnittstellenprobleme zu bearbeiten. Aus dieser interdisziplinären Betrachtungsweise wurden ganzheitliche Hinweise zur Optimierung des geothermischen Kühlpotenzials sowie Anstöße für technische und planerische Innovationen für die Praxis entwickelt und in diese transferiert.
Zu folgenden Zielen wurden Beiträge erarbeitet:
- Steigerung der Energieeffizienz der Kühlung und Kältebereitstellung
- Nutzung regenerativer Energien zur Kühlung und Kältebereitstellung
- Begrenzung der thermischen Belastung des Untergrunds und des Grundwassers
- Minimierung der Schäden und Risiken durch den Eingriff in den Untergrund
The increasing number of prosumers and the accompanying greater use of decentralised energy resources (DERs) bring new opportunities and challenges for the traditional electricity systems and the electricity markets. Microgrids, virtual power plants (VPPs), peer-to-peer (P2P) trading and federated power plants (FPPs) propose different schemes for prosumer coordination and have the potential of becoming the new paradigm of electricity market and power system operation. This paper proposes a P2P trading scheme for energy communities that negotiates power flows between participating prosumers with insufficient renewable power supply and prosumers with surplus supply in such a way that the community welfare is maximized while avoiding critical grid conditions. For this purpose, the proposed scheme is based on an Optimal Power Flow (OPF) problem with a Multi-Bilateral Economic Dispatch (MBED) formulation as an objective function. The solution is realized in a fully decentralized manner on the basis of the Relaxed Consensus + Innovations (RCI) algorithm. Network security is ensured by a tariff-based system organized by a network agent that makes use of product differentiation capabilities of the RCI algorithm. It is found that the proposed mechanism accurately finds and prevents hazardous network operations, such as over-voltage in grid buses, while successfully providing economic value to prosumers’ renewable generation within the scope of a P2P, free market.
Active participation of industrial enterprises in electricity markets - a generic modeling approach
(2021)
Industrial enterprises represent a significant portion of electricity consumers with the potential of providing demand-side energy flexibility from their production processes and on-site energy assets. Methods are needed for the active and profitable participation of such enterprises in the electricity markets especially with variable prices, where the energy flexibility available in their manufacturing, utility and energy systems can be assessed and quantified. This paper presents a generic model library equipped with optimal control for energy flexibility purposes. The components in the model library represent the different technical units of an industrial enterprise on material, media, and energy flow levels with their process constraints. The paper also presents a case study simulation of a steel-powder manufacturing plant using the model library. Its energy flexibility was assessed when the plant procured its electrical energy at fixed and variable electricity prices. In the simulated case study, flexibility use at dynamic prices resulted in a 6% cost reduction compared to a fixed-price scenario, with battery storage and the manufacturing system making the largest contributions to flexibility.
Immunosorbent turnip vein clearing virus (TVCV) particles displaying the IgG-binding domains D and E of Staphylococcus aureus protein A (PA) on every coat protein (CP) subunit (TVCVPA) were purified from plants via optimized and new protocols. The latter used polyethylene glycol (PEG) raw precipitates, from which virions were selectively re-solubilized in reverse PEG concentration gradients. This procedure improved the integrity of both TVCVPA and the wild-type subgroup 3 tobamovirus. TVCVPA could be loaded with more than 500 IgGs per virion, which mediated the immunocapture of fluorescent dyes, GFP, and active enzymes. Bi-enzyme ensembles of cooperating glucose oxidase and horseradish peroxidase were tethered together on the TVCVPA carriers via a single antibody type, with one enzyme conjugated chemically to its Fc region, and the other one bound as a target, yielding synthetic multi-enzyme complexes. In microtiter plates, the TVCVPA-displayed sugar-sensing system possessed a considerably increased reusability upon repeated testing, compared to the IgG-bound enzyme pair in the absence of the virus. A high coverage of the viral adapters was also achieved on Ta2O5 sensor chip surfaces coated with a polyelectrolyte interlayer, as a prerequisite for durable TVCVPA-assisted electrochemical biosensing via modularly IgG-assembled sensor enzymes.
A balcony photovoltaic (PV) system, also known as a micro-PV system, is a small PV system consisting of one or two solar modules with an output of 100–600 Wp and a corresponding inverter that uses standard plugs to feed the renewable energy into the house grid. In the present study we demonstrate the integration of a commercial lithium-ion battery into a commercial micro-PV system. We firstly show simulations over one year with one second time resolution which we use to assess the influence of battery and PV size on self-consumption, self-sufficiency and the annual cost savings. We then develop and operate experimental setups using two different architectures for integrating the battery into the micro-PV system. In the passive hybrid architecture, the battery is in parallel electrical connection to the PV module. In the active hybrid architecture, an additional DC-DC converter is used. Both architectures include measures to avoid maximum power point tracking of the battery by the module inverter. Resulting PV/battery/inverter systems with 300 Wp PV and 555 Wh battery were tested in continuous operation over three days under real solar irradiance conditions. Both architectures were able to maintain stable operation and demonstrate the shift of PV energy from the day into the night. System efficiencies were observed comparable to a reference system without battery. This study therefore demonstrates the feasibility of both active and passive coupling architectures.
The significant market growth of stationary electrical energy storage systems both for private and commercial applications has raised the question of battery lifetime under practical operation conditions. Here, we present a study of two 8 kWh lithium-ion battery (LIB) systems, each equipped with 14 lithium iron phosphate/graphite (LFP) single cells in different cell configurations. One system was based on a standard configuration with cells connected in series, including a cell-balancing system and a 48 V inverter. The other system featured a novel configuration of two stacks with a parallel connection of seven cells each, no cell-balancing system, and a 4 V inverter. The two systems were operated as part of a microgrid both in continuous cycling mode between 30% and 100% state of charge, and in solar-storage mode with day–night cycling. The aging characteristics in terms of capacity loss and internal resistance change in the cells were determined by disassembling the systems for regular checkups and characterizing the individual cells under well-defined laboratory conditions. As a main result, the two systems showed cell-averaged capacity losses of 18.6% and 21.4% for the serial and parallel configurations, respectively, after 2.5 years of operation with 810 (serial operation) and 881 (parallel operation) cumulated equivalent full cycles. This is significantly higher than the aging of a reference single cell cycled under laboratory conditions at 20 °C, which showed a capacity loss of only 10% after 1000 continuous full cycles.
Predictive control has great potential in the home energy management domain. However, such controls need reliable predictions of the system dynamics as well as energy consumption and generation, and the actual implementation in the real system is associated with many challenges. This paper presents the implementation of predictive controls for a heat pump with thermal storage in a real single-family house with a photovoltaic rooftop system. The predictive controls make use of a novel cloud camera-based short-term solar energy prediction and an intraday prediction system that includes additional data sources. In addition, machine learning methods were used to model the dynamics of the heating system and predict loads using extensive measured data. The results of the real and simulated operation will be presented.