Refine
Document Type
- Article (reviewed) (1)
- Book (1)
- Part of a Book (1)
- Conference Proceeding (1)
- Other (1)
- Article (unreviewed) (1)
Conference Type
- Konferenzartikel (1)
Language
- German (6)
Has Fulltext
- no (6)
Is part of the Bibliography
- yes (6)
Keywords
- Business Intelligence (2)
- Agile Business (1)
- Data Science (1)
- Data-Warehouse-Konzept (1)
- Software (1)
- Wirtschaftsinformatik (1)
Institute
Open Access
- Closed Access (3)
- Open Access (1)
Einleitung
(2019)
Agile Business Intelligence als Beispiel für ein domänenspezifisch angepasstes Vorgehensmodell
(2016)
Business-Intelligence-Systeme stellen durch ihre Unterstützung bei der Entscheidungsfindung für Unternehmen eine wichtige Rolle dar. Mit einer stetig dynamischeren Unternehmensumwelt geht daher die Anforderung nach der agilen Entwicklung dieser Systeme einher, so dass in der BI-Domäne zunehmend erfolgreich agile Methoden und Vorgehensmodelle eingesetzt werden. Die Weiterentwicklung und Anpassung von BI-Systemen ist dahingehend besonders, dass diese in der Regel langjährig gewachsenen Systemen und Strukturen betreffen, die strengen regulatorischen Rahmenbedingungen unterliegen, was eine Herausforderung für agile Vorgehensweisen darstellt. Wurden die Werte und Prinzipien des agilen Manifests [AM01] und die daraus abgeleiteten Methoden zu Beginn meist eins zu eins auf den Bereich BI übertragen, so hat sich das Verständnis von BI- Agilität als ganzheitliche Eigenschaft der BI im deutschsprachigen Raum etabliert, und agile Me- thoden wurden auf die Besonderheiten der BI-Domäne adaptiert. In diesem Beitrag werden BI-Agilität und Agile BI erläutert, ein Ordnungsrahmen für Maßnahmen zur Steigerung der BI-Agilität eingeführt sowie Herausforderungen bei Agile BI erläutert.
Data Science gilt als eine der wichtigsten Entwicklungen der letzten
Jahre und viele Unternehmen sehen in Data Science die Möglichkeit,
ihre Daten zusätzlich wertschöpfend zu nutzen. Dabei kann es sich um
die Optimierung von Maintenance-Prozessen handeln, um eine bessere
Steuerung der eigenen Preis- und Lagerhaltungsstrategie oder auch
um völlig neue Services und Produkte, die durch Data Science möglich
werden. Die im Unternehmen vorliegenden Daten, an die so hohe Erwartungen
geknüpft wurden, sollen dazu genutzt werden, um Services
und Prozesse effizienter und passgenauer gestalten zu können. Vielfach
gilt Data Science dabei als Allheilmittel: Daten, die über Jahre hinweg
gesammelt wurden und mit zunehmender Geschwindigkeit und Heterogenität
anfallen, sollen endlich nutzbar gemacht werden. Zwar sind die
eingesetzten Techniken und Algorithmen teilweise schon zehn Jahre und
mehr alt, doch erst jetzt entfalten sie im Zusammenspiel mit Big Data
ihr Potenzial im Unternehmensumfeld. Die Erwartungen sind hoch, doch
der Weg zu den neuen Erkenntnissen ist mit hohem Aufwand verbunden
und wird von einigen Unternehmen noch immer unterschätzt.
Für Unternehmen mit einem traditionellen BI-Ansatz stellt Data Science
ein ergänzendes Set von Methoden und Werkzeugen dar, mit deren Hilfe
die Informationsversorgung der Entscheider auf den verschiedenen
hierarchischen Ebenen noch besser gestaltet werden kann. So zum Beispiel,
wenn man mit Data Science feststellt, dass die Wahrscheinlichkeit
für einen Versicherungsabschluss steigt, wenn bei der Auswahl der
anzusprechenden Kunden zusätzliche Daten herangezogen werden, die
zwar bereits vorliegen, aber noch nicht berücksichtigt worden sind. Im
Extremfall werden auch Entscheidungen vollständig automatisiert, die
bisher von Mitarbeiterinnen und Mitarbeitern getroffen wurden. Ein Algorithmus
legt dann fest, wann Ware nachbestellt oder welcher Preis für
den Endkunden festgesetzt wird.
Im vorliegenden E-Book soll ein Überblick über das Gebiet Data Science
gegeben werden. Dabei wird ein besonderes Augenmerk auf das Zusammenspiel
sowie das Mit- und Nebeneinander von Data Science und vorhandenen
BI-Systemen gelegt.