Refine
Document Type
Conference Type
- Konferenzartikel (2)
Language
- English (2)
Has Fulltext
- no (2)
Is part of the Bibliography
- yes (2)
Keywords
- Niedrige Energie (1)
- Sensortechnik (1)
- Wasserstand (1)
Institute
Open Access
- Closed Access (1)
- Open Access (1)
Climate change and resultant scarcity of water are becoming major challenges for countries around the world. With the advent of Wireless Sensor Networks (WSN) in the last decade and a relatively new concept of Internet of Things (IoT), embedded systems developers are now working on designing control and automation systems that are lower in cost and more sustainable than the existing telemetry systems for monitoring. The Indus river basin in Pakistan has one of the world's largest irrigation systems and it is extremely challenging to design a low-cost embedded system for monitoring and control of waterways that can last for decades. In this paper, we present a hardware design and performance evaluation of a smart water metering solution that is IEEE 802.15.4-compliant. The results show that our hardware design is as powerful as the reference design, but allows for additional flexibility both in hardware and in firmware. The indigenously designed solution has a power added efficiency (PAE) of 24.7% that is expected to last for 351 and 814 days for nodes with and without a power amplifier (PA). Similarly, the results show that a broadband communication (434 MHz) over more than 3km can be supported, which is an important stepping stone for designing a complete coverage solution of large-scale waterways.
Environmental Monitoring is an attractive application field for Wireless Sensor Network (WSN). Water Level Monitoring helps to increase the efficiency of water distribution and management. In Pakistan, the world’s largest irrigation system covers 90.000 km of channels which needs to be monitored and managed on different levels. Especially the sensor systems for the small distribution channels need to be low energy and low cost. The distribution presents a technical solution for a communication system which is developed in a research project being co-funded by German Academic Exchange Service (DAAD). The communication module is based on IEEE-802.15.4 transceivers which are enhanced through Wake-On-Radio (WOR) to combine low-energy and real-time behavior. On higher layers, IPv6 (6LoWPAN) and corresponding routing protocols like Routing Protocol for Low power and Lossy Networks (RPL) can extend range of the network. The data are stored in a database and can be viewed online via a web interface. Of course, also automatic data analysis can be performed.