Refine
Document Type
- Conference Proceeding (10)
- Patent (4)
- Contribution to a Periodical (3)
- Article (reviewed) (2)
Language
- English (12)
- German (6)
- Other language (1)
Is part of the Bibliography
- yes (19)
Keywords
- Robotics (2)
- energy harvesting (2)
- vibration harvester (2)
- 3D Printed Force Sensor (1)
- 3D printed (1)
- 3D printing (1)
- 3D-Druck von leitfähigen Materialien (1)
- Capacitive Liquid Level Sensor (1)
- Cobotik (1)
- Embedded Constantan Wire (1)
Institute
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (19) (remove)
Open Access
- Open Access (5)
- Closed (4)
- Closed Access (4)
The Human-Robot-Collaboration (HRC) has developed rapidly in recent years with the help of collaborative lightweight robots. An important prerequisite for HRC is a safe gripper system. This results in a new field of application in robotics, which spreads mainly in supporting activities in the assembly and in the care. Currently, there are a variety of grippers that show recognizable weaknesses in terms of flexibility, weight, safety and price.
By means of Additive manufacturing (AM) gripper systems can be developed which can be used multifunctionally, manufactured quickly and customized. In addition, the subsequent assembly effort can be reduced due to the integration of several components to a complex component. An important advantage of AM is the new freedom in designing products. Thus, components using lightweight design can be produced. Another advantage is the use of 3D multi-material printing, wherein a component with different material properties and also functions can be realized.
This contribution presents the possibilities of AM considering HRC requirements. First of all, the topic of Human-Robot-Interaction with regard to additive manufacturing will be explained on the basis of a literature review. In addition, the development steps of the HRI gripper through to assembly are explained. The acquired knowledge regarding the AM are especially emphasized here. Furthermore, an application example of the HRC gripper is considered in detail and the gripper and its components are evaluated and optimized with respect to their function. Finally, a technical and economic evaluation is carried out. As a result, it is possible to additively manufacture a multifunctional and customized human-robot collaboration gripping system. Both the costs and the weight were significantly reduced. Due to the low weight of the gripping system only a small amount of about 13% of the load of the robot used is utilized.
Die Erfindung betrifft ein Verfahren zum 3D-Druck eines Roboterelements, insbesondere eines Fingers 5, zum Einsatz in der Robotik, bei dem mittels Multimaterialdruck wenigstens ein Sensor 7 während des Drucks des Roboterelements mitgedruckt wird. Weiterhin betrifft die Erfindung ein Betätigungs- oder Greifelement, insbesondere Finger 5 für einen Roboter, das durch ein derartiges Verfahren hergestellt wurde.
PROBLEM TO BE SOLVED: To provide a method of producing a robot component, particularly a gripper, the method being capable of being applied multi-functionally and shortening a mounting time to a robot.
SOLUTION: A method of producing a robot component, particularly a finger 5, applied to robotics by a three-dimensional printing method of this invention comes not to require other production processes such as attachment of a cover, etc. with a separate sensor or a material (soft, in many cases), etc., by simultaneously printing at least one sensor 7 by multi-material printing while printing the robot component.
Implementation of lightweight design in the product development process of unmanned aerial vehicles
(2017)
Avoiding collisions between a robot arm and any obstacle in its path is essential to human-robot collaboration. Multiple systems are available that can detect obstacles in the robot's way prior and subsequent to a collision. The systems work well in different areas surrounding the robot. One area that is difficult to handle is the area that is hidden by the robot arm. This paper focuses on pick and place maneuvers, especially on obstacle detection in between the robot arm and the table that robot is located on. It introduces the use of single pixel time-of-flight sensors to detect obstacles directly from the robot arm. The proposed approach reduces the complexity of the problem by locking axes of the robot that are not needed for the pick and place movement. The comparison of simulated results and laboratory measurements show concordance.
O'Barro - Cocktails 4.0
(2019)