Refine
Document Type
- Conference Proceeding (9)
- Article (reviewed) (4)
- Contribution to a Periodical (1)
- Report (1)
Conference Type
- Konferenzartikel (9)
Is part of the Bibliography
- yes (15)
Keywords
Institute
Open Access
- Open Access (11)
- Closed (3)
- Diamond (3)
- Hybrid (2)
- Bronze (1)
- Closed Access (1)
- Gold (1)
Lithium-ion batteries exhibit a complex, nonlinear and dynamic voltage behaviour. Modelling their slow dynamics is a challenge due to the multiple potential causes involved. We present here a neural equivalent circuit model for lithium-ion batteries including slow voltage dynamics. The model uses an equivalent circuit with voltage source, series resistor, and diffusion element. The series resistance is parameterized using neural networks. The diffusion element is based on a discretized form of Fickian diffusion, parameterized using a neural network and learnable parameters. It is flexible to represent not only Warburg behaviour, but also resistor-capacitor-type dynamics. Mathematically, the resulting model is given by a differential–algebraic equation system combining ordinary and neural differential equations. Therefore, the model combines concepts of both physical theory (white-box model) and artificial intelligence (black-box model) to a combined framework (grey-box model). We apply this approach to a lithium iron phosphate based lithium-ion battery cell. The experimental voltage behaviour during constant-current cycles as well as the dynamics during pulse tests are well reproduced by the model. Only at very high and very low states of charge the simulation significantly deviates from experiments, which might result from insufficient training data in these regions.
GaIN - Gewinnbringende Partizipation der mittelständischen Industrie am Energiemarkt der Zukunft
(2024)
Der vorliegende Bericht dokumentiert die Arbeiten und Ergebnisse des Forschungsprojekts GaIN – Gewinnbringende Partizipation der mittelständischen Industrie am Energiemarkt der Zukunft (Laufzeit 01.12.2019 bis 30.11.2022), das vom Bundesministerium für Wirtschaft und Klimaschutz „BMWK“ unter den Kennzeichen 03EI6019E gefördert wurde.
Das Ziel des Projektes bestand darin, durch die Digitalisierung der (mittelständischen) Industrie die Unternehmen zu befähigen aktiv gewinnbringend am volatilen Energiemarkt der Zukunft zu partizipieren.
Active participation of industrial enterprises in electricity markets - a generic modeling approach
(2021)
Industrial enterprises represent a significant portion of electricity consumers with the potential of providing demand-side energy flexibility from their production processes and on-site energy assets. Methods are needed for the active and profitable participation of such enterprises in the electricity markets especially with variable prices, where the energy flexibility available in their manufacturing, utility and energy systems can be assessed and quantified. This paper presents a generic model library equipped with optimal control for energy flexibility purposes. The components in the model library represent the different technical units of an industrial enterprise on material, media, and energy flow levels with their process constraints. The paper also presents a case study simulation of a steel-powder manufacturing plant using the model library. Its energy flexibility was assessed when the plant procured its electrical energy at fixed and variable electricity prices. In the simulated case study, flexibility use at dynamic prices resulted in a 6% cost reduction compared to a fixed-price scenario, with battery storage and the manufacturing system making the largest contributions to flexibility.
Grey-box modelling combines physical and data-driven models to benefit from their respective advantages. Neural ordinary differential equations (NODEs) offer new possibilities for grey-box modelling, as differential equations given by physical laws and neural networks can be combined in a single modelling framework. This simplifies the simulation and optimization and allows to consider irregularly-sampled data during training and evaluation of the model. We demonstrate this approach using two levels of model complexity; first, a simple parallel resistor-capacitor circuit; and second, an equivalent circuit model of a lithium-ion battery cell, where the change of the voltage drop over the resistor-capacitor circuit including its dependence on current and State-of-Charge is implemented as NODE. After training, both models show good agreement with analytical solutions respectively with experimental data.
Lithium-ion batteries exhibit slow voltage dynamics on the minute time scale that are usually associated with transport processes. We present a novel modelling approach toward these dynamics by combining physical and data-driven models into a Grey-box model. We use neural networks, in particular neural ordinary differential equations. The physical structure of the Grey-box model is borrowed from the Fickian diffusion law, where the transport domain is discretized using finite volumes. Within this physical structure, unknown parameters (diffusion coefficient, diffusion length, discretization) and dependencies (state of charge, lithium concentration) are replaced by neural networks and learnable parameters. We perform model-to-model comparisons, using as training data (a) a Fickian diffusion process, (b) a Warburg element, and (c) a resistor-capacitor circuit. Voltage dynamics during constant-current operation and pulse tests as well as electrochemical impedance spectra are simulated. The slow dynamics of all three physical models in the order of ten to 30 min are well captured by the Grey-box model, demonstrating the flexibility of the present approach.
Predictive control has great potential in the home energy management domain. However, such controls need reliable predictions of the system dynamics as well as energy consumption and generation, and the actual implementation in the real system is associated with many challenges. This paper presents the implementation of predictive controls for a heat pump with thermal storage in a real single-family house with a photovoltaic rooftop system. The predictive controls make use of a novel cloud camera-based short-term solar energy prediction and an intraday prediction system that includes additional data sources. In addition, machine learning methods were used to model the dynamics of the heating system and predict loads using extensive measured data. The results of the real and simulated operation will be presented.
Lithium-ion batteries exhibit a dynamic voltage behaviour depending nonlinearly on current and state of charge. The modelling of lithium-ion batteries is therefore complicated and model parametrisation is often time demanding. Grey-box models combine physical and data-driven modelling to benefit from their respective advantages. Neural ordinary differential equations (NODEs) offer new possibilities for grey-box modelling. Differential equations given by physical laws and NODEs can be combined in a single modelling framework. Here we demonstrate the use of NODEs for grey-box modelling of lithium-ion batteries. A simple equivalent circuit model serves as a basis and represents the physical part of the model. The voltage drop over the resistor–capacitor circuit, including its dependency on current and state of charge, is implemented as a NODE. After training, the grey-box model shows good agreement with experimental full-cycle data and pulse tests on a lithium iron phosphate cell. We test the model against two dynamic load profiles: one consisting of half cycles and one dynamic load profile representing a home-storage system. The dynamic response of the battery is well captured by the model.
Die Digitalisierung kann der Türöffner sein, um effizient die mittelständische Industrie und den Energiemarkt zu verbinden. Das Projekt GaIN hat das Ziel, mit hochaufgelösten Produktions- und Messdaten von zehn mittelständischen Industriebetrieben neuartige Tarife und angepasste Marktplattformen zu entwickeln, die Prognosegüte für Energiebedarf, Nachfrage und Flexibilitätsverfügbarkeit zu erhöhen, die Interaktion vieler flexibler Unternehmen im Verteilnetz und in dem Bilanzkreis zu bewerten und die Auswirkung einer Nutzung der Daten auf die Energiewende anhand einer Systemanalyse zu beurteilen.
The conversion of space heating for private households to climate-neutral energy sources is an essential component of the energy transition, as this sector as of 2018 was responsible for 9.4 % of Germany’s carbon dioxide emissions. In addition to reducing demand through better insulation, the use of heat pumps fed with electricity from renewable energy sources, such as on-site photovoltaics (PV) systems, is an important solution approach.
Advanced energy management and control can help to make optimal use of such heating systems. Optimal here can e.g. refer to maximizing self-consumption of self-generated PV power, extended component lifetime or a grid-friendly behavior that avoids load peaks. A powerful method for this is model predictive control (MPC), which calculates optimal schedules for the controllable influence variables based on models of the system dynamics, current measurements of system states and predictions of future external influence parameters.
In this paper, we will discuss three different use cases that show how artificial intelligence can contribute to the realization of such an MPC-based energy management and control system. This will be done using the example of a real inhabited single family home that has provided the necessary data for this purpose and where the methods are implemented and tested. The heating system consists of an air-water heat pump with direct condensation, a thermal stratified storage tank, a pellet burner and a heating rod and provides both heating and hot water. The house generates a significant portion of its electricity needs through a rooftop PV system.
The twin concept is increasingly used for optimization tasks in the context of Industry 4.0 and digitization. The twin concept can also help small and medium-sized enterprises (SME) to exploit their energy flexibility potential and to achieve added value by appropriate energy marketing. At the same time, this use of flexibility helps to realize a climate-neutral energy supply with high shares of renewable energies. The digital twin reflects real production, power flows and market influences as a computer model, which makes it possible to simulate and optimize on-site interventions and interactions with the energy market without disturbing the real production processes. This paper describes the development of a generic model library that maps flexibility-relevant components and processes of SME, thus simplifying the creation of a digital twin. The paper also includes the development of an experimental twin consisting of SME hardware components and a PLC-based SCADA system. The experimental twin provides a laboratory environment in which the digital twin can be tested, further developed and demonstrated on a laboratory scale. Concrete implementations of such a digital twin and experimental twin are described as examples.