Refine
Document Type
Conference Type
- Konferenzartikel (10)
- Konferenz-Abstract (1)
- Konferenz-Poster (1)
Language
- English (18)
Is part of the Bibliography
- yes (18)
Keywords
- E-Learning (2)
- Mobile Learning (2)
- content adaptation (2)
- device independent learning (2)
- mobile learning (2)
- 3D displays (1)
- 3D modeling (1)
- 3D printing (1)
- Cloud Security (1)
- Cloud Service Provider (1)
Institute
Open Access
- Open Access (10)
- Bronze (5)
- Closed (4)
“Today’s network landscape consists of quite different network technologies, wide range of end-devices with large scale of capabilities and power, and immense quantity of information and data represented in different formats” [9]. A lot of efforts are being done in order to establish open, scalable and seamless integration of various technologies and content presentation for different devices including mobile considering individual situation of the end user. This is very difficult because various kinds of devices used by different users or in different times/parallel by the same user which is not predictable and have to be recognized by the system in order to know device capabilities. Not only the devices but also Content and User Interfaces are big issues because they could include different kinds of data format like text, image, audio, video, 3D Virtual Reality data and upcoming other formats. Language Learning Game (LLG) is such an example of a device independent application where different kinds of devices and data formats, as a content of a flashcard is used for a collaborative learning. The idea of this game is to create a short story in a foreign language by using mobile devices. The story is developed by a group of participants by exchanging sentences/data via a flashcard system. This way the participants can learn from each other by knowledge sharing without fear of making mistakes because the group members are anonymous. Moreover they do not need a constant support from a teacher.
Today's network landscape consists of many different network technologies, a wide range of end-devices with a large scale of capabilities and power, and an immense quantity of information and data represented in different formats. Research on 3D imaging, virtual reality and holographic techniques will result in new user interfaces (UI) for mobile devices and will increase their diversity and variety. In this paper software architecture has been proposed to establish device and content format independent communication, implemented in Language Learning Game (LLG).
Cloud computing is the emerging technology providing IT as a utility through internet. The benefits of cloud computing are but not limited to service based, scalable, elastic, shared pool of resources, metered by use. Due to mentioned benefits the concept of cloud computing fits very well with the concept of m-learning which differs from other forms of e-learning, covers a wide range of possibilities opened up by the convergence of new mobile technologies, wireless communication structure and distance learning development. The concept of cloud computing like any other concept has not only benefits but also introduces myriad of security issues, such as transparency between cloud user and provider, lack of standards, security concerns related to identity, Service Level Agreements (SLA) inadequacy etc. Providing secure, transparent, and reliable services in cloud computing environment is an important issue. This paper introduces a secured three layered architecture with an advance Intrusion Detection System (advIDS), which overcomes different vulnerabilities on cloud deployed applications. This proposed architecture can reduce the impact of different attacks by providing timely alerts, rejecting the unauthorized access over services, and recording the new threat profiles for future verification. The goal of this research is to provide more control over data and applications to the cloud user, which are now mainly controlled by Cloud Service Provider (CSP).
Data is ever increasing in the computing world. Due to advancement of cloud technology the dynamics of volumes of data and its capacity has increased within a short period of time and will keep increasing further. Providing transparency, privacy, and security to the cloud users is becoming more and more challenging along with the volume of data and use of cloud services. We propose a new approach to address the above mentioned challenge by recording the user events in the cloud ecosystem into log files and applying MAR principle namely 1) Monitoring 2) Analyzing and 3) Reporting.
This paper shows the results of the evaluation of two sets of mobile web design guidelines concerning mobile learning. The first set of guidelines is concerned with the usage of text on mobile device screens. The second set is concerned with the usage of images on mobile devices. The evaluation is performed by eye tracking (objective) as well as questionnaires and interviews (subjective) respectively.
Logging information is more precious as it contains the execution of a system; it is produced by millions of events from simple application logins to random system errors. Most of the security related problems in the cloud ecosystem like intruder attacks, data loss, and denial of service, etc. could be avoided if Cloud Service Provider (CSP) or Cloud User (CU) analyses the logging information. In this paper we introduced few challenges, which are place of monitoring, security, and ownership of the logging information between CSP and CU.
Also we proposed a logging architecture to analyze the behaviour of the cloud ecosystem, to avoid data breaches and other security related issues at the CSP space. So that we believe our proposed architecture can provide maximum trust between CU and CSP.
The idea of this game is to use a flashcard system to create a short story in a foreign language. The story is developed by a group of people by exchanging sentences via a flashcard system. This way, people can learn from each other without fear of making mistakes because the group members are anonymous.
The improvements in the hardware and software of communication devices have allowed running Virtual Reality (VR) and Augmented Reality (AR) applications on those. Nowadays, it is possible to overlay synthetic information on real images, or even to play 3D on-line games on smart phones or some other mobile devices. Hence the use of 3D data for business and specially for education purposes is ubiquitous. Due to always available at hand and always ready to use properties of mobile phones, those are considered as most potential communication devices. The total numbers of mobile phone users are increasing all over the world every day and that makes mobile phones the most suitable device to reach a huge number of end clients either for education or for business purposes. There are different standards, protocols and specifications to establish the communication among different communication devices but there is no initiative taken so far to make it sure that the send data through this communication process will be understood and used by the destination device. Since all the devices are not able to deal with all kind of 3D data formats and it is also not realistic to have different version of the same data to make it compatible with the destination device, it is necessary to have a prevalent solution. The proposed architecture in this paper describes a device and purpose independent 3D data visibility any time anywhere to the right person in suitable format. There is no solution without limitation. The architecture is implemented in a prototype to make an experimental validation of the architecture which also shows the difference between theory and practice.
Today's network landscape consists of quite different network technologies, wide range of end-devices with large scale of capabilities and power, and immense quantity of information and data represented in different formats. Research on 3D imaging, virtual reality and holographic techniques will result in new user interfaces (UI) for mobile devices and will increase their diversity and variety. A lot of efforts are being done in order to establish open, scalable and seamless integration of various technologies and content presentation for different devices including mobile considering individual situation of the end user. This is very difficult because various kinds of devices used by different users or in different times/parallel by the same user which are not predictable and have to be recognized by the system in order to identify device capabilities. Not only the devices but also Content and User Interfaces are big issues because they could include different kinds of data format like text, image, audio, video, 3D Virtual Reality data and other upcoming formats. A very suitable and useful example of the use of such a system is mobile learning because of the large amount of varying devices with significantly different features and functionalities. This is true not only to support different learners, e.g. all learners within one learning community, but also to support the same learner using different equipment parallel and/or at different times. Those applications may be significantly enhanced by including virtual reality content presentation. Whatever the purposes are, it is impossible to develop and adapt content for all kind of devices including mobiles individually due to different capabilities of the devices, cost issues and author‘s requirement. A solution should be found to enable the automation of the content adaptation process.