Refine
Document Type
- Conference Proceeding (14)
- Article (unreviewed) (6)
- Article (reviewed) (3)
Conference Type
- Konferenzartikel (14)
Language
- English (23)
Is part of the Bibliography
- yes (23)
Keywords
- Generative Adversarial Network (3)
- Machine Learning (3)
- Deep Leaning (2)
- Geophysik (2)
- Stability (2)
- Computer Vision (1)
- Deep Learning (1)
- Deep diffusion models (1)
- Deep learning (1)
- Eigenvalues (1)
Open Access
- Open Access (14)
- Closed Access (5)
- Closed (4)
- Gold (2)
Deep generative models have recently achieved impressive results for many real-world applications, successfully generating high-resolution and diverse samples from complex datasets. Due to this improvement, fake digital contents have proliferated growing concern and spreading distrust in image content, leading to an urgent need for automated ways to detect these AI-generated fake images.
Despite the fact that many face editing algorithms seem to produce realistic human faces, upon closer examination, they do exhibit artifacts in certain domains which are often hidden to the naked eye. In this work, we present a simple way to detect such fake face images - so-called DeepFakes. Our method is based on a classical frequency domain analysis followed by basic classifier. Compared to previous systems, which need to be fed with large amounts of labeled data, our approach showed very good results using only a few annotated training samples and even achieved good accuracies in fully unsupervised scenarios. For the evaluation on high resolution face images, we combined several public datasets of real and fake faces into a new benchmark: Faces-HQ. Given such high-resolution images, our approach reaches a perfect classification accuracy of 100% when it is trained on as little as 20 annotated samples. In a second experiment, in the evaluation of the medium-resolution images of the CelebA dataset, our method achieves 100% accuracy supervised and 96% in an unsupervised setting. Finally, evaluating a low-resolution video sequences of the FaceForensics++ dataset, our method achieves 91% accuracy detecting manipulated videos.
Recent deep learning based approaches have shown remarkable success on object segmentation tasks. However, there is still room for further improvement. Inspired by generative adversarial networks, we present a generic end-to-end adversarial approach, which can be combined with a wide range of existing semantic segmentation networks to improve their segmentation performance. The key element of our method is to replace the commonly used binary adversarial loss with a high resolution pixel-wise loss. In addition, we train our generator employing stochastic weight averaging fashion, which further enhances the predicted output label maps leading to state-of-the-art results. We show, that this combination of pixel-wise adversarial training and weight averaging leads to significant and consistent gains in segmentation performance, compared to the baseline models.
In this preliminary report, we present a simple but very effective technique to stabilize the training of CNN based GANs. Motivated by recently published methods using frequency decomposition of convolutions (e.g. Octave Convolutions), we propose a novel convolution scheme to stabilize the training and reduce the likelihood of a mode collapse. The basic idea of our approach is to split convolutional filters into additive high and low frequency parts, while shifting weight updates from low to high during the training. Intuitively, this method forces GANs to learn low frequency coarse image structures before descending into fine (high frequency) details. Our approach is orthogonal and complementary to existing stabilization methods and can simply plugged into any CNN based GAN architecture. First experiments on the CelebA dataset show the effectiveness of the proposed method.
Recent studies have shown remarkable success in image-to-image translation for attribute transfer applications. However, most of existing approaches are based on deep learning and require an abundant amount of labeled data to produce good results, therefore limiting their applicability. In the same vein, recent advances in meta-learning have led to successful implementations with limited available data, allowing so-called few-shot learning.
In this paper, we address this limitation of supervised methods, by proposing a novel approach based on GANs. These are trained in a meta-training manner, which allows them to perform image-to-image translations using just a few labeled samples from a new target class. This work empirically demonstrates the potential of training a GAN for few shot image-to-image translation on hair color attribute synthesis tasks, opening the door to further research on generative transfer learning.
Seismic data processing involves techniques to deal with undesired effects that occur during acquisition and pre-processing. These effects mainly comprise coherent artefacts such as multiples, non-coherent signals such as electrical noise, and loss of signal information at the receivers that leads to incomplete traces. In this work, we employ a generative solution, since it can explicitly model complex data distributions and hence, yield to a better decision-making process. In particular, we introduce diffusion models for multiple removal. To that end, we run experiments on synthetic and on real data, and we compare the deep diffusion performance with standard algorithms. We believe that our pioneer study not only demonstrates the capability of diffusion models, but also opens the door to future research to integrate generative models in seismic workflows.
Transformer models have recently attracted much interest from computer vision researchers and have since been successfully employed for several problems traditionally addressed with convolutional neural networks. At the same time, image synthesis using generative adversarial networks (GANs) has drastically improved over the last few years. The recently proposed TransGAN is the first GAN using only transformer-based architectures and achieves competitive results when compared to convolutional GANs. However, since transformers are data-hungry architectures, TransGAN requires data augmentation, an auxiliary super-resolution task during training, and a masking prior to guide the self-attention mechanism. In this paper, we study the combination of a transformer-based generator and convolutional discriminator and successfully remove the need of the aforementioned required design choices. We evaluate our approach by conducting a benchmark of well-known CNN discriminators, ablate the size of the transformer-based generator, and show that combining both architectural elements into a hybrid model leads to better results. Furthermore, we investigate the frequency spectrum properties of generated images and observe that our model retains the benefits of an attention based generator.
Generative adversarial networks (GANs) provide state-of-the-art results in image generation. However, despite being so powerful, they still remain very challenging to train. This is in particular caused by their highly non-convex optimization space leading to a number of instabilities. Among them, mode collapse stands out as one of the most daunting ones. This undesirable event occurs when the model can only fit a few modes of the data distribution, while ignoring the majority of them. In this work, we combat mode collapse using second-order gradient information. To do so, we analyse the loss surface through its Hessian eigenvalues, and show that mode collapse is related to the convergence towards sharp minima. In particular, we observe how the eigenvalues of the are directly correlated with the occurrence of mode collapse. Finally, motivated by these findings, we design a new optimization algorithm called nudged-Adam (NuGAN) that uses spectral information to overcome mode collapse, leading to empirically more stable convergence properties.
Facial image manipulation is a generation task where the output face is shifted towards an intended target direction in terms of facial attribute and styles. Recent works have achieved great success in various editing techniques such as style transfer and attribute translation. However, current approaches are either focusing on pure style transfer, or on the translation of predefined sets of attributes with restricted interactivity. To address this issue, we propose FacialGAN, a novel framework enabling simultaneous rich style transfers and interactive facial attributes manipulation. While preserving the identity of a source image, we transfer the diverse styles of a target image to the source image. We then incorporate the geometry information of a segmentation mask to provide a fine-grained manipulation of facial attributes. Finally, a multi-objective learning strategy is introduced to optimize the loss of each specific tasks. Experiments on the CelebA-HQ dataset, with CelebAMask-HQ as semantic mask labels, show our model’s capacity in producing visually compelling results in style transfer, attribute manipulation, diversity and face verification. For reproducibility, we provide an interactive open-source tool to perform facial manipulations, and the Pytorch implementation of the model.
In this preliminary report, we present a simple but very effective technique to stabilize the training of CNN based GANs. Motivated by recently published methods using frequency decomposition of convolutions (eg Octave Convolutions), we propose a novel convolution scheme to stabilize the training and reduce the likelihood of a mode collapse. The basic idea of our approach is to split convolutional filters into additive high and low frequency parts, while shifting weight updates from low to high during the training. Intuitively, this method forces GANs to learn low frequency coarse image structures before descending into fine (high frequency) details. Our approach is orthogonal and complementary to existing stabilization methods and can simply plugged into any CNN based GAN architecture. First experiments on the CelebA dataset show the effectiveness of the proposed method.
A fundamental and still largely unsolved question in the context of Generative Adversarial Networks is whether they are truly able to capture the real data distribution and, consequently, to sample from it. In particular, the multidimensional nature of image distributions leads to a complex evaluation of the diversity of GAN distributions. Existing approaches provide only a partial understanding of this issue, leaving the question unanswered. In this work, we introduce a loop-training scheme for the systematic investigation of observable shifts between the distributions of real training data and GAN generated data. Additionally, we introduce several bounded measures for distribution shifts, which are both easy to compute and to interpret. Overall, the combination of these methods allows an explorative investigation of innate limitations of current GAN algorithms. Our experiments on different data-sets and multiple state-of-the-art GAN architectures show large shifts between input and output distributions, showing that existing theoretical guarantees towards the convergence of output distributions appear not to be holding in practice.