Refine
Document Type
- Conference Proceeding (14)
- Article (unreviewed) (6)
- Article (reviewed) (3)
Conference Type
- Konferenzartikel (14)
Language
- English (23)
Is part of the Bibliography
- yes (23)
Keywords
- Generative Adversarial Network (3)
- Machine Learning (3)
- Deep Leaning (2)
- Geophysik (2)
- Stability (2)
- Computer Vision (1)
- Deep Learning (1)
- Deep diffusion models (1)
- Deep learning (1)
- Eigenvalues (1)
Institute
Open Access
- Open Access (14)
- Closed Access (6)
- Closed (3)
- Gold (2)
Seismic data processing involves techniques to deal with undesired effects that occur during acquisition and pre-processing. These effects mainly comprise coherent artefacts such as multiples, non-coherent signals such as electrical noise, and loss of signal information at the receivers that leads to incomplete traces. In the past years, there has been a remarkable increase of machine-learning-based solutions that have addressed the aforementioned issues. In particular, deep-learning practitioners have usually relied on heavily fine-tuned, customized discriminative algorithms. Although, these methods can provide solid results, they seem to lack semantic understanding of the provided data. Motivated by this limitation, in this work, we employ a generative solution, as it can explicitly model complex data distributions and hence, yield to a better decision-making process. In particular, we introduce diffusion models for three seismic applications: demultiple, denoising and interpolation. To that end, we run experiments on synthetic and on real data, and we compare the diffusion performance with standardized algorithms. We believe that our pioneer study not only demonstrates the capability of diffusion models, but also opens the door to future research to integrate generative models in seismic workflows.
The term attribute transfer refers to the tasks of altering images in such a way, that the semantic interpretation of a given input image is shifted towards an intended direction, which is quantified by semantic attributes. Prominent example applications are photo realistic changes of facial features and expressions, like changing the hair color, adding a smile, enlarging the nose or altering the entire context of a scene, like transforming a summer landscape into a winter panorama. Recent advances in attribute transfer are mostly based on generative deep neural networks, using various techniques to manipulate images in the latent space of the generator.
In this paper, we present a novel method for the common sub-task of local attribute transfers, where only parts of a face have to be altered in order to achieve semantic changes (e.g. removing a mustache). In contrast to previous methods, where such local changes have been implemented by generating new (global) images, we propose to formulate local attribute transfers as an inpainting problem. Removing and regenerating only parts of images, our Attribute Transfer Inpainting Generative Adversarial Network (ATI-GAN) is able to utilize local context information to focus on the attributes while keeping the background unmodified resulting in visually sound results.
Generative adversarial networks are the state of the art approach towards learned synthetic image generation. Although early successes were mostly unsupervised, bit by bit, this trend has been superseded by approaches based on labelled data. These supervised methods allow a much finer-grained control of the output image, offering more flexibility and stability. Nevertheless, the main drawback of such models is the necessity of annotated data. In this work, we introduce an novel framework that benefits from two popular learning techniques, adversarial training and representation learning, and takes a step towards unsupervised conditional GANs. In particular, our approach exploits the structure of a latent space (learned by the representation learning) and employs it to condition the generative model. In this way, we break the traditional dependency between condition and label, substituting the latter by unsupervised features coming from the latent space. Finally, we show that this new technique is able to produce samples on demand keeping the quality of its supervised counterpart.
Recent deep learning based approaches have shown remarkable success on object segmentation tasks. However, there is still room for further improvement. Inspired by generative adversarial networks, we present a generic end-to-end adversarial approach, which can be combined with a wide range of existing semantic segmentation networks to improve their segmentation performance. The key element of our method is to replace the commonly used binary adversarial loss with a high resolution pixel-wise loss. In addition, we train our generator employing stochastic weight averaging fashion, which further enhances the predicted output label maps leading to state-of-the-art results. We show, that this combination of pixel-wise adversarial training and weight averaging leads to significant and consistent gains in segmentation performance, compared to the baseline models.
In this preliminary report, we present a simple but very effective technique to stabilize the training of CNN based GANs. Motivated by recently published methods using frequency decomposition of convolutions (e.g. Octave Convolutions), we propose a novel convolution scheme to stabilize the training and reduce the likelihood of a mode collapse. The basic idea of our approach is to split convolutional filters into additive high and low frequency parts, while shifting weight updates from low to high during the training. Intuitively, this method forces GANs to learn low frequency coarse image structures before descending into fine (high frequency) details. Our approach is orthogonal and complementary to existing stabilization methods and can simply plugged into any CNN based GAN architecture. First experiments on the CelebA dataset show the effectiveness of the proposed method.
Recent studies have shown remarkable success in image-to-image translation for attribute transfer applications. However, most of existing approaches are based on deep learning and require an abundant amount of labeled data to produce good results, therefore limiting their applicability. In the same vein, recent advances in meta-learning have led to successful implementations with limited available data, allowing so-called few-shot learning.
In this paper, we address this limitation of supervised methods, by proposing a novel approach based on GANs. These are trained in a meta-training manner, which allows them to perform image-to-image translations using just a few labeled samples from a new target class. This work empirically demonstrates the potential of training a GAN for few shot image-to-image translation on hair color attribute synthesis tasks, opening the door to further research on generative transfer learning.
The term “attribute transfer” refers to the tasks of altering images in such a way, that the semantic interpretation of a given input image is shifted towards an intended direction, which is quantified by semantic attributes. Prominent example applications are photo realistic changes of facial features and expressions, like changing the hair color, adding a smile, enlarging the nose or altering the entire context of a scene, like transforming a summer landscape into a winter panorama. Recent advances in attribute transfer are mostly based on generative deep neural networks, using various techniques to manipulate images in the latent space of the generator. In this paper, we present a novel method for the common sub-task of local attribute transfers, where only parts of a face have to be altered in order to achieve semantic changes (e.g. removing a mustache). In contrast to previous methods, where such local changes have been implemented by generating new (global) images, we propose to formulate local attribute transfers as an inpainting problem. Removing and regenerating only parts of images, our “Attribute Transfer Inpainting Generative Adversarial Network” (ATI-GAN) is able to utilize local context information to focus on the attributes while keeping the background unmodified resulting in visually sound results.
Generative adversarial networks (GANs) provide state-of-the-art results in image generation. However, despite being so powerful, they still remain very challenging to train. This is in particular caused by their highly non-convex optimization space leading to a number of instabilities. Among them, mode collapse stands out as one of the most daunting ones. This undesirable event occurs when the model can only fit a few modes of the data distribution, while ignoring the majority of them. In this work, we combat mode collapse using second-order gradient information. To do so, we analyse the loss surface through its Hessian eigenvalues, and show that mode collapse is related to the convergence towards sharp minima. In particular, we observe how the eigenvalues of the are directly correlated with the occurrence of mode collapse. Finally, motivated by these findings, we design a new optimization algorithm called nudged-Adam (NuGAN) that uses spectral information to overcome mode collapse, leading to empirically more stable convergence properties.
Generative adversarial networks are the state of the art approach towards learned synthetic image generation. Although early successes were mostly unsupervised, bit by bit, this trend has been superseded by approaches based on labelled data. These supervised methods allow a much finer-grained control of the output image, offering more flexibility and stability. Nevertheless, the main drawback of such models is the necessity of annotated data. In this work, we introduce an novel framework that benefits from two popular learning techniques, adversarial training and representation learning, and takes a step towards unsupervised conditional GANs. In particular, our approach exploits the structure of a latent space (learned by the representation learning) and employs it to condition the generative model. In this way, we break the traditional dependency between condition and label, substituting the latter by unsupervised features coming from the latent space. Finally, we show that this new technique is able to produce samples on demand keeping the quality of its supervised counterpart.
Facial image manipulation is a generation task where the output face is shifted towards an intended target direction in terms of facial attribute and styles. Recent works have achieved great success in various editing techniques such as style transfer and attribute translation. However, current approaches are either focusing on pure style transfer, or on the translation of predefined sets of attributes with restricted interactivity. To address this issue, we propose FacialGAN, a novel framework enabling simultaneous rich style transfers and interactive facial attributes manipulation. While preserving the identity of a source image, we transfer the diverse styles of a target image to the source image. We then incorporate the geometry information of a segmentation mask to provide a fine-grained manipulation of facial attributes. Finally, a multi-objective learning strategy is introduced to optimize the loss of each specific tasks. Experiments on the CelebA-HQ dataset, with CelebAMask-HQ as semantic mask labels, show our model’s capacity in producing visually compelling results in style transfer, attribute manipulation, diversity and face verification. For reproducibility, we provide an interactive open-source tool to perform facial manipulations, and the Pytorch implementation of the model.