Refine
Keywords
- Adsorption (8)
- Hochdruck (4)
- Metallorganisches Netzwerk (4)
- Methan (4)
- Kupfer (3)
- Aufreinigung (2)
- Kohlenstoff (2)
- Molekularsieb (2)
- Sorption (2)
- Wasserstoff (2)
A series of isostructural 3D coordination polymers (3)∞[M(tdc)(bpy)] (M(2+) = Zn(2+), Cd(2+), Co(2+), Fe(2+); tdc(2-) = 2,5-thiophenedicarboxylate; bpy = 4,4'-bipyridine) was synthesized and characterized by X-ray diffraction, thermal analysis, and gas adsorption measurements. The materials show high thermal stability up to approximately 400 °C and a solvent induced phase transition. Single crystal X-ray structure determination was successfully performed for all compounds after the phase transition. In the zinc-based coordination polymer, various amounts of a second type of metal ions such as Co(2+) or Fe(2+) could be incorporated. Furthermore, the catalytic behavior of the homo- and heteronuclear 3D coordination polymers in an oxidation model reaction was investigated.
Selective separation of CO2-CH4 mixed gases via magnesium aminoethylphosphonate nanoparticles
(2016)
Two closely related series of paddle-wheel-based triazolyl isophthalate MOFs are presented. Thermal and CO2 adsorption studies reveal network flexibility induced by alkyl substituents of the linker. By choice of the substituent, the pore volumes and pore diameters can be adjusted. Fine-tuning of the gate opening pressure and the hysteresis shape is possible by modulating the substitution pattern and by choice of the metal ion.
As a basis for the evaluation of hydrogen storage by physisorption, adsorption isotherms of H2 were experimentally determined for several porous materials at 77 K and 298 K at pressures up to 15 MPa. Activated carbons and MOFs were studied as the most promising materials for this purpose. A noble focus was given on how to determine whether a material is feasible for hydrogen storage or not, dealing with an assessment method and the pitfalls and problems of determining the viability. For a quantitative evaluation of the feasibility of sorptive hydrogen storage in a general analysis, it is suggested to compare the stored amount in a theoretical tank filled with adsorbents to the amount of hydrogen stored in the same tank without adsorbents. According to our results, an “ideal” sorbent for hydrogen storage at 77 K is calculated to exhibit a specific surface area of >2580 m2 g−1 and a micropore volume of >1.58 cm3 g−1.
The separation of nitrogen and methane from hydrogen-rich mixtures is systematically investigated on a recently developed binder-free zeolite 5A. For this adsorbent, the present work provides a series of experimental data on adsorption isotherms and breakthrough curves of nitrogen and methane, as well as their mixtures in hydrogen. Isotherms were measured at temperatures of 283–313 K and pressures of up to 1.0 MPa. Breakthrough curves of CH4, N2, and CH4/N2 in H2 were obtained at temperatures of 300–305 K and pressures ranging from 0.1 to 6.05 MPa with different feed concentrations. An LDF-based model was developed to predict breakthrough curves using measured and calculated data as inputs. The number of parameters and the use of correlations were restricted to focus on the importance of measured values. For the given assumptions, the results show that the model predictions agree satisfactorily with the experiments under the different operating conditions applied.