Refine
Document Type
Conference Type
- Konferenz-Abstract (3)
- Konferenz-Poster (1)
- Konferenzartikel (1)
- Sonstiges (1)
Has Fulltext
- no (11)
Is part of the Bibliography
- yes (11)
Keywords
- Arbeitsfähigkeit (1)
- Bildverarbeitung (1)
- CI Stimulation (1)
- Diagnostik (1)
- Elektrophysiologie (1)
- Hörgerät (1)
- Hörschädigung (1)
- Operation (1)
- Radiologie (1)
- bimodal hearing (1)
Institute
Open Access
- Open Access (8)
- Closed Access (2)
In users of a cochlear implant (CI) together with a contralateral hearing aid (HA), so-called bimodal listeners, differences in processing latencies between digital HA and CI up to 9 ms constantly superimpose interaural time differences. In the present study, the effect of this device delay mismatch on sound localization accuracy was investigated. For this purpose, localization accuracy in the frontal horizontal plane was measured with the original and minimized device delay mismatch. The reduction was achieved by delaying the CI stimulation according to the delay of the individually worn HA. For this, a portable, programmable, battery-powered delay line based on a ring buffer running on a microcontroller was designed and assembled. After an acclimatization period to the delayed CI stimulation of 1 hr, the nine bimodal study participants showed a highly significant improvement in localization accuracy of 11.6% compared with the everyday situation without the delay line (p < .01). Concluding, delaying CI stimulation to minimize the device delay mismatch seems to be a promising method to increase sound localization accuracy in bimodal listeners.
The ability to detect a signal masked by noise is improved in normal-hearing (NH) listeners when interaural phase differences (IPD) between the ear signals exist either in the masker or the signal. We determined the impact of different coding strategies in bilaterally implanted cochlear implant (BiCI) users with and without fine-structure coding (FSC) on masking level differences. First, binaural intelligibility level differences (BILD) were determined in NH listeners and BiCI users using their clinical speech processors. NH subjects (n=8) showed a significant mean BILD of 7.5 dB. In contrast, BiCI users (n=9) without FSC as well as with FSC revealed a barely significant mean BILD (0.4 dB respectively 0.6 dB). Second, IPD thresholds were measured in BiCI users using either their speech processors with FS4 or direct stimulation with FSC. With the latter approach, synchronized stimulation providing an interaural accuracy of stimulation timing of 1.67 µs was realized on pitch matched electrode pairs. The resulting individual IPD threshold was lower in most of the subjects with direct stimulation than with their speech processors. These outcomes indicate that some BiCI users can benefit from increased temporal precision of interaural FSC and adjusted interaural frequency-place mapping presumably resulting in improved BILD.
The interaural time difference (ITD) is an important cue for the localization of sounds. ITD changes as little as 10 μs can be detected by the human auditory system. By provision of one ear with a cochlear implant (CI) ITD are altered due to the partial replacement of the peripheral auditory system. A hearing aid (HA), in contrast, does not replace but adds a processing delay component to the peripheral auditory system extending ITD. The aim of the present study was to quantify interaural stimulation timing between these different modalities to estimate the need for central auditory temporal compensation in single sided deaf CI users or bimodal CI/HA users. For this purpose, wave V latencies of auditory brainstem responses evoked either acoustically (ABR) or electrically via the CI (EABR) have been measured. The sum of delays consisting of CI signal processing measured in the MED-EL OPUS2 audio processor and EABR wave V latencies evoked on different intracochlear sites allowed an estimation of the entire CI channel-specific delay for MED-EL MAESTRO CI systems. We compared these values with ABR wave V latencies measured in the contralateral normal hearing or HA provided ear in different frequency bands. The results showed that EABR wave V latencies were consistently shorter than those evoked acoustically in the unaided normal hearing ear. Thus, artificial delays within the audio processor can be implemented to adjust interaural stimulation timing. The currently implemented group delays in the MED-EL CI system turned out to be reasonably similar to those of the unaided ear. For adjustment of CI and contralateral HA, in contrast, an adjustable additional across-frequency delay in the range of 1–11 ms implemented in the CI would be required. Especially for bimodal CI/HA users the adjustment of interaural stimulation timing may induce improved binaural hearing, reduced need for central auditory temporal compensation and increased acceptance of the CI/HA provision.
Im Rahmen der Cochleaimplantat (CI)-Versorgung werden sowohl intraoperativ als auch postoperativ verschiedene elektrische und elektrophysiologische Diagnostikverfahren eingesetzt, bei denen elektrische Messgrößen vom CI erfasst und elektrophysiologische Messungen bei CI-Patienten durchgeführt werden. Zu den elektrophysiologischen Diagnostikverfahren zählen die Messung der elektrisch evozierten Summenaktionspotenziale des Hörnervs, die Registrierung der elektrisch evozierten auditorischen Hirnstammpotenziale und die Erfassung der elektrisch evozierten auditorischen kortikalen Potenziale. Diese Potenziale widerspiegeln die Erregung des Hörnervs und die Reizverarbeitung in verschiedenen Stationen der aufsteigenden Hörbahn bei intracochleärer elektrischer Stimulation mittels eines CI. Bei den aktuellen CI sind die Beurteilung der Elektrodenlage sowie die Prüfung der Ankopplung des Implantats an den Hörnerv wichtige Anwendungsgebiete der elektrophysiologischen Diagnostikverfahren. Ein weiteres bedeutendes Einsatzfeld stellt die Prüfung der Reizverarbeitung in der Hörbahn dar. Das Hauptanwendungsgebiet dieser Verfahren bildet jedoch die Unterstützung der Anpassung der CI-Sprachprozessoren bei Säuglingen und Kleinkindern auf der Basis elektrophysiologischer Schwellen.
Die drei großen Hersteller von Cochlea-Implantat (CI)-Systemen ermöglichen es klinischen Audiologen, die Mikrofoneigenschaften der meisten CI-Sprachprozessoren zu prüfen. Dazu können bei diesen Sprachprozessoren Monitorkopfhörer angeschlossen und das/die Mikrofon(e) inklusive eines Teils der Signalvorverarbeitung abgehört werden. Präzise Angaben dazu, mit welchen Stimuli, bei welchem Pegel und nach welchem Kriterium diese Prüfung stattfinden soll, machen die CI-Hersteller nicht. Auf Basis dieser Prüfung soll der Audiologe dann über die Funktion der Mikrofone und damit darüber entscheiden, ob der betreffende Sprachprozessor an den Hersteller eingeschickt wird oder nicht.
Zur Objektivierung der CI-Sprachprozessor-Mikrofon-Prüfung haben wir eine Testbox entwickelt, mit der alle abhörbaren aktuellen CI-Sprachprozessoren der drei großen Hersteller geprüft werden können. Die Box wurde im 3D-Druck-Verfahren hergestellt. Der zu prüfende Sprachprozessor wird in die Messbox eingehängt und über einen darin verbauten Lautsprecher mit definierten Prüfsignalen (Sinustöne unterschiedlicher Frequenz) beschallt. Das Mikrofonsignal wird über das Kabel der Monitorkopfhörer herausgeführt und mit einer Shifting- and Scaling-Schaltung in einen Spannungsbereich transformiert, der für die AD-Wandlung mit einem Mikrokontroller (ATmega1280 verbaut auf einem Arduino Mega) geeignet ist. Derselbe Mikrokontroller übernimmt über einen eigens gebauten DA-Wandler die Ausgabe der Sinustöne über den Lautsprecher. Signalaufnahme und –wiedergabe erfolgen mit jeweils 38,5 kHz Samplingrate. Der für jede Frequenz über mehrere Perioden des Prüfsignals ermittelte Effektivwert wird mit dem Effektivwert, der mit einem neuwertigen Referenzprozessor für diese Frequenz gemessen wurde, verglichen. Die Messergebnisse werden graphisch auf einem Display ausgegeben.
Derzeit läuft eine erste Datenerhebung mit in der Klinik subjektiv auffällig gewordenen CI-Sprachprozessoren, die anschließend in der Messbox untersucht werden. So sollen realistische Schwellen für kritische Abweichungen von den Referenz-Effektivwerten ermittelt werden. Im weiteren Verlauf sollen dann Hit und False Alarm-Raten der subjektiven Prüfung bestimmt werden.
The ability to detect a target signal masked by noise is improved in normal-hearing listeners when interaural phase differences (IPDs) between the ear signals exist either in the masker or in the signal. To improve binaural hearing in bilaterally implanted cochlear implant (BiCI) users, a coding strategy providing the best possible access to IPDs is highly desirable. Outcomes of a previous study (Zirn, Arndt et al. 2016) revealed that a subset of BiCI users showed improved IPD detection thresholds with the fine structure processing strategy FS4 compared to the constant rate strategy HDCIS using narrowband stimuli. In contrast, little differences between the coding strategies were found for broadband stimuli with regard to binaural speech intelligibility level differences (BILD) as an estimate of binaural unmasking. Compared to normalhearing listeners (7.5 ± 1.2 dB) BILD were small in BiCI users (around 0.5 dB with both coding strategies).
In the present work, we investigated the influence of binaural fitting parameters on BILD. In our cohort of BiCI users many were implanted with electrode arrays differing in length left versus right. Because this length difference typically corresponded to the distance of two electrode contacts the first modification of bilateral fitting was a tonotopic adjustment by deactivation of the most apical electrode contact on the side with the deeper inserted array (tonotopic approach).
The second modification was the isolation of the residual, most apical electrode contacts by deactivation of the basally adjacent electrode contact on each side (tonotopic sparse approach). Applying these modifications, BILD improved by up to 1.5 dB.
Das normalhörende auditorische System ist in der Lage, interaurale Zeit- bzw. Phasendifferenzen zur verbesserten Signaldetektion im Störgeräusch zu nutzen. Dieses Phänomen wird häufig als binaurale Entmaskierung bezeichnet und ist sowohl bei einfachen Signalen wie Sinustönen, als auch bei Sprachsignalen im Störgeräusch wirksam. Vorangegangene Studien haben gezeigt, dass binaurale Entmaskierung eingeschränkt auch bei bilateralen CI-Trägern beobachtbar ist (Zirn et al., 2016).
Aktuelle Ergebnisse zeigen, dass die binaurale Entmaskierung sensitiv gegenüber der bilateralen CI-Anpassung ist. So lässt sich der Effekt durch tonotopen Abgleich und Herausstellen eines apikalen Feinstrukturkanals modulieren. Steigerungen der binauralen Entmaskierung um bis zu 1,5 dB sind auf diese Weise gegenüber der konventionellen CI-Anpassung möglich. Allerdings variiert der Einfluss der CI-Anpassung interindividuell erheblich.
BiCI users’ sensitivity to interaural phase differences for single- and multi-channel stimulation
(2016)
Die Hersteller von Cochlea-Implantat (CI)-Systemen sehen für klinische Audiologen die Möglichkeit vor, die Mikrofonleistung der meisten aktuellen CI-Sprachprozessoren mittels anschließbarer Monitorkopfhörer zu prüfen. Nähere Angaben dazu, nach welchem Prozedere diese Prüfung stattfinden soll, z. B. welche Stimuli mit welchen Pegeln verwendet werden sollen, sind nach Wissen der Autoren seitens der CI-Hersteller nicht verfügbar. Auf der Basis dieser subjektiven Prüfung entscheidet dann der Audiologe, ob der betreffende Sprachprozessor an den Hersteller eingeschickt wird oder nicht. Wir haben eine Messbox entwickelt, mit der die Mikrofonleistung aller abhörbaren CI-Sprachprozessoren der Hersteller Advanced Bionics, Cochlear und MED-EL objektiv geprüft werden kann. Die Box wurde im 3-D-Druckverfahren hergestellt. Der zu prüfende Sprachprozessor wird in die Messbox eingehängt und über einen verbauten Lautsprecher mit definierten Prüfsignalen (Sinustönen unterschiedlicher Frequenz) beschallt. Das Signal des Mikronfons bzw. der Mikrofone wird über das in der Audio-/Abhörbuchse des Prozessors eingesteckte Kabel der Monitorkopfhörer herausgeführt und mit einer Shifting and Scaling-Schaltung in einen Spannungsbereich transformiert, der für die A/D-Wandlung mit einem Mikrokontroller (ATmega1280 verbaut auf einem Arduino Mega) geeignet ist. Derselbe Mikrokontroller übernimmt über einen eigens gebauten D/AWandler die Ausgabe der Prüfsignale über den Lautsprecher. Signalaufnahme und –wiedergabe erfolgt jeweils mit einer Samplingrate von 38,5 kHz. Der frequenzspezifische Effektivwert des abgegriffenen Mikrofonsignals wird mit einem Referenzwert verglichen. Die (frequenzspezifischen) Referenzwerte wurden mit einem neuwertigen Sprachprozessor gleichen Typs ermittelt und im Speicher des Mikrokontrollers abgelegt. Das Ergebnis wird nach Abschluss der Messung grafisch auf einem Touchscreen ausgegeben. Derzeit läuft eine erste Datenerhebung mit in der Klinik subjektiv auffällig gewordenen CI-Sprachprozessoren, die anschließend in der Messbox untersucht werden. Längerfristiges Ziel ist es, die hit und false alarm Raten der subjektiven Prüfung zu ermitteln.
The ability to detect a target signal masked by noise is improved in normal-hearing listeners when interaural phase differences (IPDs) between the ear signals exist either in the masker or in the signal. To improve binaural hearing in bilaterally implanted cochlear implant (BiCI) users, a coding strategy providing the best possible access to IPD is highly desirable. In this study, we compared two coding strategies in BiCI users provided with CI systems from MED-EL (Innsbruck, Austria). The CI systems were bilaterally programmed either with the fine structure processing strategy FS4 or with the constant rate strategy high definition continuous interleaved sampling (HDCIS). Familiarization periods between 6 and 12 weeks were considered. The effect of IPD was measured in two types of experiments: (a) IPD detection thresholds with tonal signals addressing mainly one apical interaural electrode pair and (b) with speech in noise in terms of binaural speech intelligibility level differences (BILD) addressing multiple electrodes bilaterally. The results in (a) showed improved IPD detection thresholds with FS4 compared with HDCIS in four out of the seven BiCI users. In contrast, 12 BiCI users in (b) showed similar BILD with FS4 (0.6 ± 1.9 dB) and HDCIS (0.5 ± 2.0 dB). However, no correlation between results in (a) and (b) both obtained with FS4 was found. In conclusion, the degree of IPD sensitivity determined on an apical interaural electrode pair was not an indicator for BILD based on bilateral multielectrode stimulation.