Refine
Document Type
Conference Type
- Konferenzartikel (1)
Is part of the Bibliography
- yes (12)
Keywords
- Medizintechnik (5)
- Angewandte Forschung (1)
- Antenne (1)
- Applikation (1)
- Beamforming (1)
- Bioelement (1)
- FEM model (1)
- Formale Beschreibung (1)
- Implantat (1)
- Induktive Schnittstelle (1)
Institute
Open Access
- Open Access (8)
- Closed Access (2)
- Bronze (1)
- Closed (1)
- Gold (1)
Das Institut für Angewandte Forschung arbeitet seit Jahren an RFID-Applikationen unter Verwendung des Protokolls nach ISO15693-Standard. Wir entwickeln in dem Zusammenhang sowohl Frontendelektronik als auch Reader, die es ermöglichen, diese Tags auszulesen. Projekte der vergangenen Jahre waren sowohl SEAGsens als auch medizintechnische Anwendungen unterschiedlichster Art.
Metallische Gehäuse stellen eine große Herausforderung für die Schnittstelle von aktiven medizinischen Implantaten dar. Ihre elektrische Leitfähigkeit und die sich dadurch ergebenden Wirbelströme verhindern das Eindringen von hochfrequenten elektromagnetischen Wellen und Feldern. Aus diesem Grund werden die Antennen außerhalb des Gehäuses platziert. Niederfrequentere magnetische Felder dringen jedoch durch das metallische Gehäuse, wenn auch abgeschwächt. Damit kann eine induktive Kommunikation realisiert und so elektrische Durchführungen durch das ansonsten hermetisch dichte Gehäuse vermieden werden.
In dieser Arbeit wird die induktive Datenübertragung durch ein metallisches Gehäuse untersucht. Ein Modell wird entwickelt, das die Effekte des metallischen Gehäuses auf die Übertragung berücksichtigt. Hierzu werden in einem neuen Ansatz anhand von FEM Simulationen Korrekturfaktoren ermittelt. Diese Korrekturfaktoren können visualisiert und direkt auf die Auslegung der Antennenspulen angewendet werden. Im Gegensatz zu anderen Modellierungen werden nur frei zugängliche Software-Lösungen verwendet. Zudem werden die Feldverteilungen durch die im metallischen Gehäuse entstehenden Wirbelströme untersucht. Die unterschiedlichen Gehäuse- und Spulenparameter werden im Hinblick auf deren Einfluss auf das Übertragungsverhalten diskutiert, was in dieser Form bisher noch nicht veröffentlicht wurde. Das resultierende Modell kann auf unterschiedliche Ausführungen der metallischen Kapselung angepasst werden um damit die Grenzen und Einschränkungen unterschiedlicher metallischer Gehäuse-Materialien zu untersuchen.
Mit der Weiterentwicklung eines Transceivers, der mit 10 kBit/s bei 125 kHz Trägerfrequenz arbeitet, wird ein Übertragungsbaustein entwickelt, der mit herkömmlichen Mikrocontrollern verwendet werden kann. Der Transceiver wird in einem ASIC mit 32 Pin QFN-Gehäuse implementiert. Anschließend werden die Funktionalität überprüft und die elektrischen Eigenschaften im Hinblick auf Temperatur-, Spannungs- und Frequenz-Verhalten charakterisiert. Durch die geringe Stromaufnahme und die hohe Datenrate bei niedriger Trägerfrequenz eignet sich dieser Transceiver für Langzeitanwendungen in medizinischen Implantaten. Das Neue an dem Transceiver ist seine Einsatzfähigkeit für metallische Gehäuse, die wegen der schmalen Bandbreite mit \approx\unit[4]{kHz} eine effiziente Datenübertragung trotz hoher Dämpfung ermöglicht und darüber hinaus die frequenzabhängige Verzerrung der Impedanz- und Übertragungsparameter minimiert.
Anhand einer konkreten Anwendung für eine implantierbare steuerbare Infusionspumpe werden die gesamte Elektronik des Implantats sowie eines kleinen und ein großen Bediengerätes konzipiert, entwickelt, programmiert und erfolgreich in Betrieb genommen. Darin werden sowohl das induktive Übertragungsmodell als auch der Transceiver verwendet und somit deren Funktionalität und Einsatzfähigkeit demonstriert. Mithilfe dieser Entwicklung ist es möglich, über einen Abstand von 65 mm, die Dosierung eines Medikaments einzustellen und an den Tagesrhythmus der Patient*innen anzupassen sowie die Funktionalität des Implantats zu überprüfen. Aktuell gibt es auf dem Markt ein weiteres ähnliches Produkt, zu dem jedoch keine wissenschaftlichen Veröffentlichungen vorliegen. Diese Arbeit liefert damit einen wissenschaftlichen Beitrag für die Entwicklung langlebiger metallisch gekapselter Implantate mit induktiver Schnittstelle.
Cellular phone antennas are generally designed to have radiation patterns that are as omnidirectional as possible. Omnidirectional antennas allow a phone’s radio to work well for many orientations of the phone with respect to the cellular base station. Recent studies, however, are generating uncertainty about the health effects of prolonged exposure to electromagnetic (EM) radiation from cellular phones. In this paper, an antenna array is designed primarily to minimize users’ exposure to EM radiation. The antenna comprises a beamforming 4 by 3 array of microstrip patch antennas that is controlled by an accelerometer-only inertial navigation system. The proposed design reduces radiated power directed toward the user to below 10% of the total in the worst case.
Formal Description of Inductive Air Interfaces Using Thévenin's Theorem and Numerical Analysis
(2014)
With the development of new integrated circuits to interface radio frequency identification protocols, inductive air interfaces have become more and more important. Near field communication is not only able to communicate, but also possible to transfer power wirelessly and to build up passive devices for logistical and medical applications. In this way, the power management on the transponder becomes more and more relevant. A designer has to optimize power consumption as well as energy harvesting from the magnetic field. This paper discusses a model with simple equations to improve transponder antenna matching. Furthermore, a new numerical analysis technique is presented to calculate the coupling factors, inductions, and magnetic fields of multiantenna systems.
Mice and rats make up 95% of all animals used in medical research and drug discovery and development. Monitoring of physiological functions such as ECG, blood pressure, and body temperature over the entire period of an experiment is often required. Restraining of the animals in order to obtain this data can cause great inconvenience. The use of telemetric systems solves this problem and provides more reliable results. However, these devices are mostly equipped with batteries, which limit the time of operation or they use passive power supplies, which affects the operating range. The semi-passive telemetric implant being presented is based on RFID technology and overcomes these obstacles. The device is inductively powered using the magnetic field of a common RFID reader device underneath the cage, but is also able to operate for several hours autonomously. Being independent from the battery capacity, it is possible to use the implant over a long period of time or to re-use the device several times in different animals, thus avoiding the disadvantages of existing systems and reducing the costs of purchase and refurbishment.
An Ultra-Low-Power RFID/NFC Frontend IC Using 0.18 μm CMOS Technology for Passive Tag Applications
(2018)
Battery-less passive sensor tags based on RFID or NFC technology have achieved much popularity in recent times. Passive tags are widely used for various applications like inventory control or in biotelemetry. In this paper, we present a new RFID/NFC frontend IC (integrated circuit) for 13.56 MHz passive tag applications. The design of the frontend IC is compatible with the standard ISO 15693/NFC 5. The paper discusses the analog design part in details with a brief overview of the digital interface and some of the critical measured parameters. A novel approach is adopted for the demodulator design, to demodulate the 10% ASK (amplitude shift keying) signal. The demodulator circuit consists of a comparator designed with a preset offset voltage. The comparator circuit design is discussed in detail. The power consumption of the bandgap reference circuit is used as the load for the envelope detection of the ASK modulated signal. The sub-threshold operation and low-supply-voltage are used extensively in the analog design—to keep the power consumption low. The IC was fabricated using 0.18 μm CMOS technology in a die area of 1.5 mm × 1.5 mm and an effective area of 0.7 mm2. The minimum supply voltage desired is 1.2 V, for which the total power consumption is 107 μW. The analog part of the design consumes only 36 μW, which is low in comparison to other contemporary passive tags ICs. Eventually, a passive tag is developed using the frontend IC, a microcontroller, a temperature and a pressure sensor. A smart NFC device is used to readout the sensor data from the tag employing an Android-based application software. The measurement results demonstrate the full passive operational capability. The IC is suitable for low-power and low-cost industrial or biomedical battery-less sensor applications. A figure-of-merit (FOM) is proposed in this paper which is taken as a reference for comparison with other related state-of-the-art researches.
The growing demand for active medical implantable devices requires data and or power links between the implant and the outside world. Every implant has to be encapsulated from the body by a specific housing and one of the most common materials used is titanium or titanium alloy. Titanium thas the necessary properties in terms of mechanical and chemical stability and biocompatibility. However, its electrical conductivity presents a challenge for the electromagnetic transmission of data and power. The proposed paper presents a fast and practical method to determine the necessary transmission parameters for titanium encapsulated implants. Therefore, the basic transformer-transmission-model is used with measured or calculated key values for the inductances. Those are then expanded with correction factors to determine the behavior with the encapsulation. The correction factors are extracted from finite element method simulations. These also enable the analysis of the magnetic field distribution inside of the housing. The simulated transmission properties are very close to the measured values. Additionally, based on lumped elements and magnetic field distribution, the influential parameters are discussed in the paper. The parameter discussion describes how to enhance the transmitted power, data-rate or distance, or to reduce the size of the necessary coils. Finally, an example application demonstrates the usage of the methods.
Das Institut für Angewandte Forschung (IAF) der Hochschule Offenburg arbeitet seit mehreren Jahren an der Entwicklung der elektronischen Pille, mit der Medikamente im Darm telemetrisch gesteuert auf Kommando freigesetzt werden können. Das System benötigt dazu eine hochminiaturisierte Elektronik, die in Form eines integrierten Schaltkreises (ASIC) entwickelt wurde.
A new RFID/NFC (ISO 15693 standard) based inductively powered passive SoC (System on chip) for biomedical applications is presented here. The proposed SOC consists of an integrated 32 bit microcontroller, RFID/NFC frontend, sensor interface circuit, analog to digital converter and some peripherals such as timer, SPI interface and memory devices. An energy harvesting unit supplies the power required for the entire system for complete passive operation. The complete chip is realized on CMOS 0.18 μm technology with a chip area of 1.5 mm × 3.0 mm.