Refine
Document Type
- Doctoral Thesis (3)
Has Fulltext
- no (3)
Is part of the Bibliography
- yes (3)
Keywords
- Adaptive Steuerung (1)
- Algotithmus (1)
- Implantat (1)
- Induktive Schnittstelle (1)
- Medizintechnik (1)
- Multiple lineare Regressiomn (1)
- Nahfeldkommunikation (1)
- Passives System (1)
- RFID (1)
- TABS Steuerung (1)
Institute
Open Access
- Open Access (3)
- Bronze (1)
- Diamond (1)
Entwicklung und Evaluierung eines adaptiv-prädiktiven Algorithmus für thermoaktive Bauteilsysteme
(2017)
Der Gebäudesektor ist einer der Hauptverbraucher von Energie und somit mitverantwortlich für einen wesentlichen Anteil an CO2-Emissionen. Heiz- und Kühlkonzepte, die erneuerbare Energiequellen nutzen können, gewinnen daher immer mehr an Bedeutung. Hierfür besonders geeignet sind Niedertemperatursysteme, wie beispielsweise Thermoaktive Bauteilsysteme (TABS). Die große thermische Trägheit und die geringe Leistung dieser Systeme verhindern eine schnelle Reaktion auf Raumtemperaturänderungen. Bisherige Steuer- und Regelstrategien für TABS können nur sehr schlecht mit der thermischen Trägheit umgehen, da diese in der Regel keine Prädiktionen verwenden. Hinzu kommt eine aufwändige Parametrierung dieser TABS-Strategien, was in der Praxis zu Inbetriebnahmephasen von oft mehreren Jahren führt. Die Möglichkeit TABS als einen Kurzzeitenergiespeicher für das durch die wachsende Einspeisung aus fluktuierenden erneuerbaren Energiequellen belastete Stromnetz nutzbar zu machen, spielt bei diesen Standard-TABS-Strategien bisher keine Rolle.
In dieser Arbeit wurde ein neuartiger Algorithmus für die Steuerung von TABS entwickelt, der hier durch die Abkürzung AMLR gekennzeichnet wird. Die AMLR nutzt Vorhersagen der Hauptstörgrößen einer TABS-Zone zur Berechnung eines innerhalb des nächsten Tages zuzuführenden Energiepaketes. Zu den Hauptstörgrößen zählen die tagesgemittelte Außentemperatur, die tagesgemittelte globale Einstrahlung sowie ein Belegungsplan jeder TABS-Zone. Die AMLR verwendet ein dynamisches und ein stationäres Widerstands-Kapazitäten(RC)-Modell mit einem Verzögerungsglied erster Ordnung (PT1). Das stationäre TABS- und Raummodell wird für eine Adaptionsfähigkeit und das dynamische Modell für die zeitdiskrete Berechnung von Leistungen genutzt. Es wird gezeigt, dass die Genauigkeit eines Modells mit PT1-Glied für die Steuerung von TABS ausreichend ist. Durch die Adaptionfähigkeit kann sich der Algorithmus automatisiert an unterschiedliche Gebäude, Standorte und Nutzungsprofile anpassen. Auf die Erstellung eines Gebäudemodells inklusive dessen technischer Gebäudeausrüstung (TGA), der Wärmelasten sowie der Wettereinflüsse kann somit verzichtet werden. Weiterhin können mit der AMLR mittlere Soll-Raumtemperaturen pro TABS-Zone vorgegeben werden, was bei Standard-TABS-Strategien nicht möglich ist. Dem Autor stehen als Testumgebungen zur Evaluierung der AMLR die Triple-Klimakammer des Instituts für Energiesystemtechnik (INES) der Hochschule Offenburg sowie zwei reale Gebäude und deren Simulationsmodelle zur Verfügung. Bei den Gebäuden handelt es sich um das in Basel befindliche IWB CityCenter sowie das Seminargebäude der Hochschule Offenburg.
Mit Hilfe der Triple-Klimakammer werden die verwendeten RC-Modelle sowie das TRNSYS-Simulationsmodell der Kammer selbst validiert. Durch den direkten Vergleich der AMLR zu Standard-TABS-Strategien kann in Model-in-the-Loop (MiL) Simulationen, Laborversuchen und Pilotanlagen gezeigt werden, dass die AMLR insbesondere dann thermische Energie einsparen kann, wenn es bei der Standardstrategie zu Überhitzungen im Heizfall und Unterkühlungen im Kühlfall kommt. Des Weiteren zeigen sich Energieeinsparpotenziale durch die Möglichkeit der zonenspezifischen Beladung der TABS. Anhand von Messdaten einer Pilotanlage kann eine Reduktion des thermischen TABS-Energiebedarfs von über 41 % belegt werden. In allen Testumgebungen kann eine Einsparung an Hilfsenergie von bis zu 86 % für die TABS-Pumpen bei gleichzeitiger Verbesserung des thermischen Komforts nachgewiesen werden. Neben Energieeinsparungen sind durch den Einsatz der AMLR Investitionseinsparungen durch eine vereinfachte TABS-Hydraulik möglich, da keine konstanten Vorlauftemperaturen notwendig sind. Weiterhin kann gezeigt werden, dass die Leistung eines Zusatzkühlsystems durch den Einsatz der AMLR im Vergleich zur Standard-TABS-Strategie reduziert werden kann, ohne den thermischen Komfort zu beeinträchtigen. Anhand von Simulationsrechnungen wird das Potenzial von TABS für Lastverschiebemaßnahmen quantifiziert. Durch die Verwendung der AMLR mit dynamischen Strompreisen ist im gezeigten Beispiel eine Einsparung an monetären Kosten von 38 % möglich. Weiterhin konnten Anfragen zur Abschaltung der Beladung der TABS zum Ausgleich fluktuierender erneuerbarer Energieerzeuger durch die AMLR unter Einhaltung des thermischen Komforts durchgeführt werden.
Metallische Gehäuse stellen eine große Herausforderung für die Schnittstelle von aktiven medizinischen Implantaten dar. Ihre elektrische Leitfähigkeit und die sich dadurch ergebenden Wirbelströme verhindern das Eindringen von hochfrequenten elektromagnetischen Wellen und Feldern. Aus diesem Grund werden die Antennen außerhalb des Gehäuses platziert. Niederfrequentere magnetische Felder dringen jedoch durch das metallische Gehäuse, wenn auch abgeschwächt. Damit kann eine induktive Kommunikation realisiert und so elektrische Durchführungen durch das ansonsten hermetisch dichte Gehäuse vermieden werden.
In dieser Arbeit wird die induktive Datenübertragung durch ein metallisches Gehäuse untersucht. Ein Modell wird entwickelt, das die Effekte des metallischen Gehäuses auf die Übertragung berücksichtigt. Hierzu werden in einem neuen Ansatz anhand von FEM Simulationen Korrekturfaktoren ermittelt. Diese Korrekturfaktoren können visualisiert und direkt auf die Auslegung der Antennenspulen angewendet werden. Im Gegensatz zu anderen Modellierungen werden nur frei zugängliche Software-Lösungen verwendet. Zudem werden die Feldverteilungen durch die im metallischen Gehäuse entstehenden Wirbelströme untersucht. Die unterschiedlichen Gehäuse- und Spulenparameter werden im Hinblick auf deren Einfluss auf das Übertragungsverhalten diskutiert, was in dieser Form bisher noch nicht veröffentlicht wurde. Das resultierende Modell kann auf unterschiedliche Ausführungen der metallischen Kapselung angepasst werden um damit die Grenzen und Einschränkungen unterschiedlicher metallischer Gehäuse-Materialien zu untersuchen.
Mit der Weiterentwicklung eines Transceivers, der mit 10 kBit/s bei 125 kHz Trägerfrequenz arbeitet, wird ein Übertragungsbaustein entwickelt, der mit herkömmlichen Mikrocontrollern verwendet werden kann. Der Transceiver wird in einem ASIC mit 32 Pin QFN-Gehäuse implementiert. Anschließend werden die Funktionalität überprüft und die elektrischen Eigenschaften im Hinblick auf Temperatur-, Spannungs- und Frequenz-Verhalten charakterisiert. Durch die geringe Stromaufnahme und die hohe Datenrate bei niedriger Trägerfrequenz eignet sich dieser Transceiver für Langzeitanwendungen in medizinischen Implantaten. Das Neue an dem Transceiver ist seine Einsatzfähigkeit für metallische Gehäuse, die wegen der schmalen Bandbreite mit \approx\unit[4]{kHz} eine effiziente Datenübertragung trotz hoher Dämpfung ermöglicht und darüber hinaus die frequenzabhängige Verzerrung der Impedanz- und Übertragungsparameter minimiert.
Anhand einer konkreten Anwendung für eine implantierbare steuerbare Infusionspumpe werden die gesamte Elektronik des Implantats sowie eines kleinen und ein großen Bediengerätes konzipiert, entwickelt, programmiert und erfolgreich in Betrieb genommen. Darin werden sowohl das induktive Übertragungsmodell als auch der Transceiver verwendet und somit deren Funktionalität und Einsatzfähigkeit demonstriert. Mithilfe dieser Entwicklung ist es möglich, über einen Abstand von 65 mm, die Dosierung eines Medikaments einzustellen und an den Tagesrhythmus der Patient*innen anzupassen sowie die Funktionalität des Implantats zu überprüfen. Aktuell gibt es auf dem Markt ein weiteres ähnliches Produkt, zu dem jedoch keine wissenschaftlichen Veröffentlichungen vorliegen. Diese Arbeit liefert damit einen wissenschaftlichen Beitrag für die Entwicklung langlebiger metallisch gekapselter Implantate mit induktiver Schnittstelle.
Ultra-low-power passive telemetry systems for industrial and biomedical applications have gained much popularity lately. The reduction of the power consumption and size of the circuits poses critical challenges in ultra-low-power circuit design. Biotelemetry applications like leakage detection in silicone breast implants require low-power-consuming small-size electronics. In this doctoral thesis, the design, simulation, and measurement of a programmable mixed-signal System-on-Chip (SoC) called General Application Passive Sensor Integrated Circuit (GAPSIC) is presented. Owing to the low power consumption, GAPSIC is capable of completely passive operation. Such a batteryless passive system has lower maintenance complexity and is also free from battery-related health hazards. With a die area of 4.92 mm² and a maximum analog power consumption of 592 µW, GAPSIC has one of the best figure-of-merits compared to similar state-of-the-art SoCs. Regarding possible applications, GAPSIC can read out and digitally transmit the signals of resistive sensors for pressure or temperature measurements. Additionally, GAPSIC can measure electrocardiogram (ECG) signals and conductivity.
The design of GAPSIC complies with the International Organization for Standardization (ISO) 15693/NFC (near field communication) 5 standard for radio frequency identification (RFID), corresponding to the frequency range of 13.56 MHz. A passive transponder developed with GAPSIC comprises of an external memory storage and very few other external components, like an antenna and sensors. The passive tag antenna and reader antenna use inductive coupling for communication and energy transfer, which enables passive operation. A passive tag developed with GAPSIC can communicate with an NFC compatible smart device or an ISO 15693 RFID reader. An external memory storage contains the programmable application-specific firmware.
As a mixed-signal SoC, GAPSIC includes both analog and digital circuitries. The analog block of GAPSIC includes a power management unit, an RFID/NFC communication unit, and a sensor readout unit. The digital block includes an integrated 32-bit microcontroller, developed by the Hochschule Offenburg ASIC design center, and digital peripherals. A 16-kilobyte random-access memory and a read-only 16-kilobyte memory constitute the GAPSIC internal memory. For the fabrication of GAPSIC, one poly, six-metal 0.18 µm CMOS process is used.
The design of GAPSIC includes two stages. In the first stage, a standalone RFID/NFC frontend chip with a power management unit, an RFID/NFC communication unit, a clock regenerator unit, and a field detector unit was designed. In the second stage, the rest of the functional blocks were integrated with the blocks of the RFID/NFC frontend chip for the final integration of GAPSIC. To reduce the power consumption, conventional low-power design techniques were applied extensively like multiple power supplies, and the operation of complementary metal-oxide-semiconductor (CMOS) transistors in the sub-threshold region of operation, as well as further innovative circuit designs.
An overvoltage protection circuit, a power rectifier, a bandgap reference circuit, and two low-dropout (LDO) voltage regulators constitute the power management unit of GAPSIC. The overvoltage protection circuit uses a novel method where three stacked transistor pairs shunt the extra voltage. In the power rectifier, four rectifier units are arranged in parallel, which is a unique approach. The four parallel rectifier units provide the optimal choice in terms of voltage drop and the area required.
The communication unit is responsible for RFID/NFC communication and incorporates demodulation and load modulation circuitry. The demodulator circuit comprises of an envelope detector, a high-pass filter, and a comparator. Following a new approach, the bandgap reference circuit itself acts as the load for the envelope detector circuit, which minimizes the circuit complexity and area. For the communication between the reader and the RFID/NFC tag, amplitude-shift keying (ASK) is used to modulate signals, where the smallest modulation index can be as low as 10%. A novel technique involving a comparator with a preset offset voltage effectively demodulates the ASK signal. With an effective die area of 0.7 mm² and power consumption of 107 µW, the standalone RFID/NFC frontend chip has the best figure-of-merits compared to the state-of-the-art frontend chips reported in the relevant literature. A passive RFID/NFC tag developed with the standalone frontend chip, as well as temperature and pressure sensors demonstrate the full passive operational capability of the frontend chip. An NFC reader device using a custom-built Android-based application software reads out the sensor data from the passive tag.
The sensor readout circuit consists of a channel selector with two differential and four single-ended inputs with a programmable-gain instrumentation amplifier. The entire sensor readout part remains deactivated when not in use. The internal memory stores the measured offset voltage of the instrumentation amplifier, where a firmware code removes the offset voltage from the measured sensor signal. A 12-bit successive approximation register (SAR) type analog-to-digital-converter (ADC) based on a charge redistribution architecture converts the measured sensor data to a digital value. The digital peripherals include a serial peripheral interface, four timers, RFID/NFC interfaces, sensor readout unit interfaces, and 12-bit SAR logic.
Two sets of studies with custom-made NFC tag antennas for biomedical applications were conducted to ascertain their compatibility with GAPSIC. The first study involved the link efficiency measurements of NFC tag antennas and an NFC reader antenna with porcine tissue. In a separate experiment, the effect of a ferrite compared to air core on the antenna-coupling factor was investigated. With the ferrite core, the coupling factor increased by four times.
Among the state-of-the-art SoCs published in recent scientific articles, GAPSIC is the only passive programmable SoC with a power management unit, an RFID/NFC communication interface, a sensor readout circuit, a 12-bit SAR ADC, and an integrated 32-bit microcontroller. This doctoral research includes the preliminary study of three passive RFID tags designed with discrete components for biomedical and industrial applications like measurements of temperature, pH, conductivity, and oxygen concentration, along with leakage detection in silicone breast implants. Besides its small size and low power consumption, GAPSIC is suitable for each of the biomedical and industrial applications mentioned above due to the integrated high-performance microcontroller, the robust programmable instrumentation amplifier, and the 12-bit analog-to-digital converter. Furthermore, the simulation and measurement data show that GAPSIC is well suited for the design of a passive tag to monitor arterial blood pressure in patients experiencing Peripheral Artery Disease (PAD), which is proposed in this doctoral thesis as an exemplary application of the developed system.