IMLA - Institute for Machine Learning and Analytics
Refine
Document Type
- Conference Proceeding (46)
- Article (unreviewed) (19)
- Article (reviewed) (9)
- Part of a Book (3)
- Report (3)
- Book (2)
- Contribution to a Periodical (1)
- Doctoral Thesis (1)
Conference Type
- Konferenzartikel (44)
- Konferenz-Abstract (1)
- Sonstiges (1)
Is part of the Bibliography
- yes (84)
Keywords
- Deep Leaning (11)
- Machine Learning (9)
- Robustness (4)
- Data Science (3)
- Generative Adversarial Network (3)
- image classification (3)
- Aliasing (2)
- Benutzererlebnis (2)
- CNNs (2)
- Computer Vision (2)
Institute
- IMLA - Institute for Machine Learning and Analytics (84)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (74)
- Fakultät Wirtschaft (W) (7)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (1)
- Fakultät Medien und Informationswesen (M+I) (bis 21.04.2021) (1)
- WLRI - Work-Life Robotics Institute (1)
Open Access
- Open Access (59)
- Bronze (17)
- Closed (12)
- Closed Access (11)
- Diamond (11)
- Gold (4)
- Hybrid (3)
- Grün (2)
Laboratory courses have always been one of the most important components of university science courses. It is expected that first-year engineering students will acquire basic skills to deal with experimental data after such course. This ability to generate knowledge using experiments they could and should use later in subsequent courses. However, a number of pedagogical researches revealed that most students do not master the necessary skills. As one possible way to solve this problem, the course “Search for Physics Laws” was developed. This course is based on the theory of the gradual formation of mental actions and can be put into educational practice by using different laboratory equipment. Evaluation of the course showed that the organized in the new way laboratory sessions is more effective than traditional laboratory sessions. In this work, we consider in detail how students’ understanding of the basic concepts of error analysis changes over the course.
Human-machine interaction can be supported by the detection of humans through the simultaneous localization and distinction from non-human objects. This paper compares modern object detection algorithms (Damo-YOLO, YOLOv6, YOLOv7 and YOLOv8) in combination with Transfer Learning and Super Resolution in different scenarios to achieve human detection on low resolution infrared images. The data set created for this purpose includes images of an empty room, images of warm coffee cups, and images of people in various scenarios and at distances ranging from two to six meters. The Average Precision AP@50 and AP@50:95 values achieved across all scenarios reach up to 98.02 % and 66.99 % respectively.
This paper presents the new Deep Reinforcement Learning (DRL) library RL-X and its application to the RoboCup Soccer Simulation 3D League and classic DRL benchmarks. RL-X provides a flexible and easy-to-extend codebase with self-contained single directory algorithms. Through the fast JAX-based implementations, RL-X can reach up to 4.5 speedups compared to well-known frameworks like Stable-Baselines3.
Die Relevanz von Social Media und Influencer Marketing hat zu grundlegenden Veränderungen des Marketings geführt. In diesem Beitrag werden empirisch zentrale Kriterien zur Auswahl von Kooperationspartnern untersucht, geeignete Wege zur Kontaktaufnahme aufgezeigt sowie Lösungsansätze zur Vermeidung möglicher Interessenskonflikte in der Zusammenarbeit dargestellt. Auf Basis der gewonnenen Erkenntnisse lassen sich erfolgreiche Kooperationen mit gegenseitigem Mehrwert für Unternehmen und Influencer schaffen.
Online grocery shopping (OGS) has significantly risen due to accelerated retail digitization and reshaped consumer shopping behaviors over the last years. Despite this trend, the German online grocery market lags behind its international counterparts. Notably, with almost half of the German population aged over 50 and the 55–64 age group emerging as the largest user segment in e-commerce, the over-50 demographic presents an attractive yet relatively overlooked audience for the expansion of the online grocery market. However, research on OGS behavior among German over-50s is scarce. This study addresses this gap, empirically investigating OGS adoption factors within this demographic through an online survey with 179 respondents. Our findings reveal that over a third of the over-50 demographic has embraced OGS, indicating a growing receptivity for OGS among the over-50s. Notably, home delivery, product variety, convenience, and curiosity emerged as primary drivers for OGS adoption among this demographic. Surprisingly, most adopters did not increase online grocery orders since 2020 and a not inconsiderable proportion have even stopped buying groceries online again. For potential OGS adopters, regional product availability turned out as a motivator, signaling substantial growth potential and providing online grocers with strategic opportunities to target this demographic. In light of our research, we offer practical suggestions to online grocery retailers, aiming to overcome barriers and capitalize on key drivers identified in our study for sustained growth in the over-50 market segment.
Der Online-Handel verzeichnet seit Jahren ein stetiges Wachstum. Durch die COVID-19-Pandemie kaufen nun auch Nutzende, die zuvor physische Kanäle bevorzugten, vermehrt online ein. Der Anbietererfolg hängt dabei wesentlich von der Kenntnis über die Kund*innen ab. Allerdings dominieren einige große Anbieter den Markt, während kleinere Online-Shops Schwierigkeiten haben, ihre Angebote zu personalisieren. Eine Lösung bietet der Ansatz selbstbestimmter Identitäten. Dieser ermöglicht Kund*innen, ihre eigenen Shoppingdaten zu kontrollieren und sie selektiv mit Online-Shops zu teilen. Dadurch können individuelle Wünsche und Anforderungen der Kund*innen in Online-Shops berücksichtigt und ein personalisiertes Angebot sowie eine gute Nutzungserfahrung geboten werden. Trotz des großen Potenzials selbstbestimmter Identitäten ist der Ansatz in Deutschland kaum verbreitet. Dieser Beitrag beleuchtet den Einsatz selbstbestimmter Identitäten im Online-Handel. Mithilfe eines menschenzentrierten Gestaltungsprozesses wurden Personas und Ist-Szenarien erstellt, sowie daraus resultierend Anforderungen erhoben und Potenziale identifiziert. Auf Basis dessen konnte ein Daten- und Architekturmodell zur Integration von selbstbestimmten Identitäten im Online-Handel entwickelt werden.
This paper presents the new Deep Reinforcement Learning (DRL) library RL-X and its application to the RoboCup Soccer Simulation 3D League and classic DRL benchmarks. RL-X provides a flexible and easy-to-extend codebase with self-contained single directory algorithms. Through the fast JAX-based implementations, RL-X can reach up to 4.5x speedups compared to well-known frameworks like Stable-Baselines3.
Modern CNNs are learning the weights of vast numbers of convolutional operators. In this paper, we raise the fundamental question if this is actually necessary. We show that even in the extreme case of only randomly initializing and never updating spatial filters, certain CNN architectures can be trained to surpass the accuracy of standard training. By reinterpreting the notion of pointwise ($1\times 1$) convolutions as an operator to learn linear combinations (LC) of frozen (random) spatial filters, we are able to analyze these effects and propose a generic LC convolution block that allows tuning of the linear combination rate. Empirically, we show that this approach not only allows us to reach high test accuracies on CIFAR and ImageNet but also has favorable properties regarding model robustness, generalization, sparsity, and the total number of necessary weights. Additionally, we propose a novel weight sharing mechanism, which allows sharing of a single weight tensor between all spatial convolution layers to massively reduce the number of weights.