Keine Relevanz
Refine
Document Type
- Conference Proceeding (51)
- Other (25)
- Working Paper (18)
- Article (unreviewed) (13)
- Contribution to a Periodical (11)
- Report (11)
- Part of a Book (5)
- Letter to Editor (4)
- Patent (3)
- Article (reviewed) (2)
Conference Type
- Konferenz-Abstract (38)
- Konferenz-Poster (10)
- Sonstiges (3)
Keywords
- Biomechanik (9)
- Biomechanics (7)
- injury (6)
- RoboCup (5)
- Deep Learning (3)
- biomechanics (3)
- running (3)
- ACL (2)
- Biologische Methanisierung (2)
- COVID-19 (2)
Institute
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (48)
- Fakultät Medien (M) (ab 22.04.2021) (44)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (35)
- IBMS - Institute for Advanced Biomechanics and Motion Studies (ab 16.11.2022) (18)
- Fakultät Wirtschaft (W) (13)
- IMLA - Institute for Machine Learning and Analytics (13)
- POIM - Peter Osypka Institute of Medical Engineering (9)
- INES - Institut für nachhaltige Energiesysteme (8)
- CRT - Campus Research & Transfer (2)
- WLRI - Work-Life Robotics Institute (2)
Note from the editor
(2024)
Cellular materials are an established field of research, often driven by applications. Manufactur-ing issues traditionally play a significant role in such established topics. New manufacturing pro-cesses frequently create cellular structures, and the question of the industrial usability of these techniques remains a key concern for the community. The boundaries between traditional mate-rial classes often blur, as manufacturing processes can be applied to a wide variety of materials. This trend is exemplified by the ongoing use of additive manufacturing methods, particularly in the production of highly porous materials. The contributions published in this special section are selected works presented during the CELLMAT 2022 conference, highlighting the advancements in eco-friendly and sustainable techniques in the field of cellular materials.
Running footwear is continuously being modified and improved; however, running-related overuse injury rates remain high. Nevertheless, novel manufacturing processes enable the production of individualized running shoes that can fit the individual needs of runners, with the potential to reduce injury risk. For this reason, it is essential to investigate functional groups of runners, a collective of runners who respond similarly to a footwear intervention. Therefore, the objective of this study was to develop a framework to identify functional groups based on their individual footwear response regarding injury-specific running-related risk factors for Achilles tendinopathy, Tibial stress fractures, Medial tibial stress syndrome, and Patellofemoral pain syndrome. In this work, we quantified the footwear response patterns of 73 female and male participants when running in three different footwear conditions using unsupervised learning (k-means clustering). For each functional group, we identified the footwear conditions minimizing the injury-specific risk factors. We described differences in the functional groups regarding their running style, anthropometric, footwear perception, and demographics. The results implied that most functional groups showed a tendency for a single footwear condition to reduce most biomechanical risk factors for a specific overuse injury. Functional groups often differed in their hip and pelvis kinematics as well as their subjective rating of the footwear conditions. The footwear intervention only partially affected biomechanical risk factors attributed to more proximal joints. Due to its adaptive nature, the framework could be applied to other footwear interventions or performance-related biomechanical variables.
Frühere Arbeiten haben gezeigt, dass die Fähigkeit zur Lokalisation von Schallsignalen in der Horizontalebene bei Trägern von Cochlea-Implantat (CI) ipsi- und Hörgerät (HG) kontralateral (bimodale Versorgung), verbessert werden kann, wenn die statische interaurale Zeitverzögerung (Timing Mismatch – TM) technisch reduziert wird [1]. Das TM wird durch Unterschiede der Prozessierungslatenzen von CI und HG und durch unterschiedliche Stimulationsorte (CI: Hörnerv; HG: äußerer Gehörgang) verursacht. Ein CI-Hersteller hat die technische Reduktion des TM zwischenzeitlich als frequenzübergreifende Verzögerung der CI-Stimulation für die CI-Anpassung verfügbar gemacht. Dadurch lässt sich das TM zwar reduzieren, für eine Eliminierung bräuchte es aber eine frequenzspezifische Verzögerung der CI-Stimulation.
Zusätzlich zum TM treten bei bimodal Versorgten auch statische interaurale tonotope Differenzen auf (Place of Stimulation Mismatch – PM). Grund hierfür ist die begrenzte Insertionstiefe des CI-Elektrodenarrays. Meist wird diesem Umstand bei der CI-Anpassung nicht Rechnung getragen. Es wird eine von der Insertionstiefe unabhängige Frequenz-Elektroden-Zuordnung verwendet. Da in einem akustisch hörenden Ohr aber jedem Ort in der Cochlea nicht nur eine charakteristische Frequenz sondern auch eine charakteristische Prozessierungszeit (Cochlear Delay) zugeordnet werden kann, gelingt die Feinabstimmung von TM und PM bei bimodaler Versorgung nur gemeinsam. Als erster Ansatz zur Untersuchung dieses Effektes wird im Vortrag die Auswirkung von TM und PM separat vorgestellt. Erhöhung des TM wie auch des PM führt zur Reduktion der Schalllokalisationsfähigkeit. Allerdings reduziert TM sowohl den RMSE als auch den Signed Bias, während mit steigendem PM primär der RMSE schlechter wird. Wie TM/PM und binaurale Fusion interagiert, wird zusätzlich im Vortrag erörtert.
Globally, only 20-50% of dementia cases are diagnosed, indicating a major gap in the identification and treatment of this neurological disorder. Despite this, there is widespread agreement among both doctors and patients on the value of early diagnosis to adjust care and daily routines effectively. To address this issue, the German federal government launched a national dementia strategy in 2020. Current research, suggests that early treatment of certain risk factors could prevent or slow down one-third of dementia cases. The METIS project is based on the understanding that dementia is caused by complex processes which are linked to individual risk profiles and aims to make personalized treatment strategies for neurodegenerative diseases more accessible through an e-health platform.