WLRI - Work-Life Robotics Institute
Refine
Year of publication
Document Type
Conference Type
- Konferenzartikel (22)
- Konferenz-Poster (2)
- Sonstiges (1)
Is part of the Bibliography
- yes (32)
Keywords
- Funktechnik (3)
- Robotics (3)
- Sicherheit (3)
- energy harvesting (3)
- Applikation (2)
- Data analysis (2)
- Datensicherung (2)
- Kommunikation (2)
- Process quality (2)
- Robot accuracy (2)
Institute
Open Access
- Closed Access (20)
- Open Access (8)
- Closed (4)
- Bronze (2)
- Diamond (2)
- Gold (1)
Human-machine interaction can be supported by the detection of humans through the simultaneous localization and distinction from non-human objects. This paper compares modern object detection algorithms (Damo-YOLO, YOLOv6, YOLOv7 and YOLOv8) in combination with Transfer Learning and Super Resolution in different scenarios to achieve human detection on low resolution infrared images. The data set created for this purpose includes images of an empty room, images of warm coffee cups, and images of people in various scenarios and at distances ranging from two to six meters. The Average Precision AP@50 and AP@50:95 values achieved across all scenarios reach up to 98.02 % and 66.99 % respectively.
The objective of this work is to automate thread cutting of internal threads using an industrial robot. The system is designed to accommodate various sheet sizes based on the robot's working range. The robot controller records the data of axis 6 during the cutting process, which will be applied for process and quality analysis. This axis was utilised for the cutting process. An optical displacement sensor determines the accuracy of the moving axis. The robot's endlessly rotating axis 6 offers further advantages, including no additional drive for cutting, maximum flexibility, high automation, and a large working range of up to 800 ∙ 800 mm depending on the robot. The maximum torque derived from the cutting process was 3.52 Nm. The radial movement of the chuck was measured at ∆r = 0.27 mm, which was 60 times higher than the planned data.
Automatisiertes Gewindeschneiden mit einer endlosdrehenden Achse 6 eines vertikalen Knickarmroboters
(2024)
Ziel der Arbeit ist es, das Gewindeschneiden direkt mit einem Roboter zu automatisieren. Dabei soll einerseits die eintönige Tätigkeit reduziert und andererseits die Anlage flexibel gehalten werden. Die Schwerpunkte sind der Schneidprozess, die Erfassung von Qualitätsdaten und der Einsatz über diverse Bleche hinweg. Gerade die Vielzahl an Blechen stellt für den Hersteller eine besondere Herausforderung dar. Mit dem Robotereinsatz ergibt sich ein deutlicher, wirtschaftlicher Vorteil.
Background: Assistive Robotic Arms are designed to assist physically disabled people with daily activities. Existing joysticks and head controls are not applicable for severely disabled people such as people with Locked-in Syndrome. Therefore, eye tracking control is part of ongoing research. The related literature spans many disciplines, creating a heterogeneous field that makes it difficult to gain an overview.
Objectives: This work focuses on ARAs that are controlled by gaze and eye movements. By answering the research questions, this paper provides details on the design of the systems, a comparison of input modalities, methods for measuring the performance of these controls, and an outlook on research areas that gained interest in recent years.
Methods: This review was conducted as outlined in the PRISMA 2020 Statement. After identifying a wide range of approaches in use the authors decided to use the PRISMA-ScR extension for a scoping review to present the results. The identification process was carried out by screening three databases. After the screening process, a snowball search was conducted.
Results: 39 articles and 6 reviews were included in this article. Characteristics related to the system and study design were extracted and presented divided into three groups based on the use of eye tracking.
Conclusion: This paper aims to provide an overview for researchers new to the field by offering insight into eye tracking based robot controllers. We have identified open questions that need to be answered in order to provide people with severe motor function loss with systems that are highly useable and accessible.
In this contribution, we present a novel 3D printed multi-material, electromagnetic vibration harvester. The harvester is based on a cantilever design and utilizes an embedded constantan wire within a matrix of polyethylene terephthalate glycol (PETG). A prototype has been manufactured with a combination of a fused filament fabrication (FFF) printer and a robot with a custom-made tool.
Printed circuit boards (PCB) are a foundation of electronical devices in modern society. The fabrication of these boards requires various processes and machines. The utilisation of a robot with multiple tools can shorten the process chain compared to screen printing. In this paper a system is presented, which utilises an industrial six axis robot to manufacture
PCBs. The process flow and conversion process of the Gerber format into robot specific commands is presented. The advantages and challenges applying a robot to print circuits are discussed.
The following paper presents the results of a feasibility study about Bluetooth Low Energy (BLE) based wireless sensors. The development of industrial wireless sensors leads to important demands for the wireless technologies like a low energy consumption and a resource saving simple protocol stack. Bluetooth Low Energy (BLE) is a rather new wireless standard which will completely fulfill these fundamental requirements. A self-designed BLE sensor system has been used to explore the common applicability of BLE for wireless sensor systems. The evaluation results of various analyses with the BLE sensor system are now presented in this paper.
During the last ten years the development of wireless sensing applications has become more and more attractive. A major reason for this trend is the large quantity of available wireless technologies. The progressing demand on wireless technologies is mainly driven through development from the industrial wireless sensors market. Especially requirements like low energy consumption, a resource saving simple protocol stack and short timing delays between different states of the wireless transceivers are very important for wireless sensors. Bluetooth Low Energy (BLE) is a rather new wireless standard in addition to the traditional Bluetooth standard (Basis rate and enhanced data rate, BR/EDR) [1]. The BLE will completely fulfill these fundamental requirements. First BLE transceiver chips and modules are available and have been tested and implemented in products. In this paper the performance analysis results of a BLE sensor system which is based on the TI transceiver CC2540F [5] will be presented. The results can be taken for further important investigations like lifetime calculations or BLE simulation models.
This paper presents the development of an energy harvesting solution for a driven tool holder. The tool holder environment was analysed, a test stand built and the designed electromagnetic rotation harvester was evaluated. The reported harvester is based on low cost off-the-shelf components and 3D printed parts. The utilisation of SMD coils allows easy adaptation to changing parameters of the integration area. Energy harvesting in tool holders enables predictive maintenance or condition monitoring in the industrial production. These capabilities are mandatory nowadays in regards of IIoT. A reliable energy source is key for continuous monitoring. Changing batteries becomes obsolete. The results provide useful insight for future harvesters.
Human–robot collaborative applications have been receiving increasing attention in industrial applications. The efficiency of the applications is often quite low compared to traditional robotic applications without human interaction. Especially for applications that use speed and separation monitoring, there is potential to increase the efficiency with a cost-effective and easy to implement method. In this paper, we proposed to add human–machine differentiation to the speed and separation monitoring in human–robot collaborative applications. The formula for the protective separation distance was extended with a variable for the kind of object that approaches the robot. Different sensors for differentiation of human and non-human objects are presented. Thermal cameras are used to take measurements in a proof of concept. Through differentiation of human and non-human objects, it is possible to decrease the protective separation distance between the robot and the object and therefore increase the overall efficiency of the collaborative application.
A Review on Kinetic Energy Harvesting with Focus on 3D Printed Electromagnetic Vibration Harvesters
(2021)
The increasing amount of Internet of Things (IoT) devices and wearables require a reliable energy source. Energy harvesting can power these devices without changing batteries. Three-dimensional printing allows us to manufacture tailored harvesting devices in an easy and fast way. This paper presents the development of hybrid and non-hybrid 3D printed electromagnetic vibration energy harvesters. Various harvesting approaches, their utilised geometry, functional principle, power output and the applied printing processes are shown. The gathered harvesters are analysed, challenges examined and research gaps in the field identified. The advantages and challenges of 3D printing harvesters are discussed. Reported applications and strategies to improve the performance of printed harvesting devices are presented.
Efficient collaborative robotic applications need a combination of speed and separation monitoring, and power and force limiting operations. While most collaborative robots have built-in sensors for power and force limiting operations, there are none with built-in sensor systems for speed and separation monitoring. This paper proposes a system for speed and separation monitoring directly from the gripper of the robot. It can monitor separation distances of up to three meters. We used single-pixel Time-of-Flight sensors to measure the separation distance between the gripper and the next obstacle perpendicular to it. This is the first system capable of measuring separation distances of up to three meters directly from the robot's gripper.
This work compares the performance of Bluetooth Mesh implementations on real chipsets against the ideal implementation of the specification. Measurements are taken in experimental settings and reveal non-idealities in the underlying Bluetooth Low Energy specification in real chipsets and in the implementation of Mesh, which introduces an unruly transmission as well as reception behavior. These effects lead to an impact on transmission rate, reception rate, latency, as well as a more significant impact on the average power consumption.
A novel Bluetooth Low Energy advertising scan algorithm is presented for hybrid radios that are additionally capable to measure energy on Bluetooth channels, e.g. as they would need to be compliant with IEEE 802.15.4. Scanners applying this algorithm can achieve a low latency whilst consuming only a fraction of the power that existing mechanisms can achieve at a similar latency. Furthermore, the power consumption can scale with the incoming network traffic and in contrast to the existing mechanisms, scanners can operate without any frame loss given ideal network conditions. The algorithm does not require any changes to advertisers, hence, stays compatible with existing devices. Performance evaluated via simulation and experiments on real hardware shows a 37 percent lower power consumption compared to the best existing scan setting while even achieving a slightly lower latency which proves that this algorithm can be used to improve the quality of service of connection-less Bluetooth communication or reduce the connection establishment time of connection-oriented communication.
O'Barro - Cocktails 4.0
(2019)
Avoiding collisions between a robot arm and any obstacle in its path is essential to human-robot collaboration. Multiple systems are available that can detect obstacles in the robot's way prior and subsequent to a collision. The systems work well in different areas surrounding the robot. One area that is difficult to handle is the area that is hidden by the robot arm. This paper focuses on pick and place maneuvers, especially on obstacle detection in between the robot arm and the table that robot is located on. It introduces the use of single pixel time-of-flight sensors to detect obstacles directly from the robot arm. The proposed approach reduces the complexity of the problem by locking axes of the robot that are not needed for the pick and place movement. The comparison of simulated results and laboratory measurements show concordance.
We present a novel approach that utilizes BLE packets sent from generic BLE capable radios to synthesize an FSK-(like) addressable wake-up packet. A wake-up receiver system was developed from off-the-shelf components to detect these packets. It makes use of two differential signal paths separated by passive band-pass filters. After the rectification of each channel a differential amplifier compares the signals and the resulting wake-up signal is evaluated by an AS3933 wake-up receiver IC. Overall, the combination of these techniques contributes to a BLE compatible wake-up system which is more robust than traditional OOK wake-up systems. Thus, increasing wake-up range, while still maintaining a low energy budget. The proof-of-concept setup achieved a sensitivity of -47.8 dBm at a power consumption of 18.5 uW during passive listening. The system has a latency of 31.8 ms with a symbol rate of 1437 Baud.
Human-robot collaboration plays a strong role in industrial production processes. The ISO/TS 15066 defines four different methods of collaboration between humans and robots. So far, there was no robotic system available that incorporates all four collaboration methods at once. Especially for the speed and separation monitoring, there was no sensor system available that can easily be attached directly to an off-the-shelf industrial robot arm and that is capable of detecting obstacles in distances from a few millimeters up to five meters. This paper presented first results of using a 3D time-of-flight camera directly on an industrial robot arm for obstacle detection in human-robot collaboration. We attached a Visionary-T camera from SICK to the flange of a KUKA LBR iiwa 7 R800. With Matlab, we evaluated the pictures and found that it works very well for detecting obstacles in a distance range starting from 0.5 m and up to 5 m.
Dieser Beitrag stellt die Möglichkeiten des 3D-Druckes unter der Berücksichtigung von Mensch-Roboter-Kollaborations-Anforderungen dar. Dabei werden die Vorteile mit besonderem Fokus auf die zusätzliche Gestaltungsfreiheit erläutert. Anhand von Beispielen wird der Stand der Technik bereits eingesetzter Sensorik sowie deren Notwendigkeit in Greifsystemen erläutert. Im weiteren Verlauf dieses Beitrags werden allgemeine Verfahren für die additive Verarbeitung von leitfähigen Materialien vorgestellt. Daran angeknüpft sind Beispiele speziell zur 3D-gedruckten Sensorik. Abgerundet wird der Beitrag mit einem Ausblick bezüglich 3D-gedruckter Sensorik in MRK-Greifsystemen.