Refine
Year of publication
- 2003 (3) (remove)
Document Type
- Article (reviewed) (3) (remove)
Is part of the Bibliography
- yes (3) (remove)
Keywords
- Blase (1)
- Diode‐array TLC (1)
- Fluorescence detection (1)
- Fluorescence enhancement (1)
- Geschwindigkeitsverteilung (1)
- HPTLC (1)
- Intense sweetener (1)
- Reagent‐free derivatization (1)
- Reynolds-Zahl (1)
- Spalt (1)
A Simple and Reliable HPTLC Method for the Quantification of the Intense Sweetener Sucralose®
(2003)
This paper describes a simple and fast thin layer chromatography (TLC) method for the monitoring of the relatively new intense sweetener Sucralose® in various food matrices. The method requires little or no sample preparation to isolate or concentrate the analyte. The Sucralose® extract is separated on amino‐TLC‐plates, and the analyte is derivatized “reagent‐free” by heating the developed plate for 20 min at 190°C. Spots can be measured either in the absorption or fluorescence mode. The method allows the determination of Sucralose® at the levels of interest regarding foreseen European legislation (>50 mg/kg) with excellent repeatability (RSD = 3.4%) and recovery data (95%).
The structure of the separation bubble that appears in the secondary meridional flow between two coaxially rotating spheres at low and finite Reynolds number (Re) is considered. The low Re analytical study was motivated by recognizing some errors in the analytical work on this problem by Arunachalam and Majhi (1987, Q. Jl Mech. Appl. Math., 40, 47) whilst the finite Re experimental study was motivated by the desire to observe the separation bubble in the laboratory. Though the finite Re experiments were performed in a confined apparatus, they exhibit the qualitative features of the low Re theoretical predictions for the axisymmetric separation bubble that encloses two toroidal vortices symmetrically disposed above and below the mid‐plane of sphere separation, but strong effects of confinement are apparent. The flows observed include (i) a wall‐attached bubble symmetric about the mid‐plane at low Re, (ii) symmetric free‐standing bubbles at moderate Re, and (iii) an asymmetric bubble with flow separating from one sphere and attaching to the support shaft between the spheres at sufficiently high Re.
The free convection in a vertical gap is generalized to realize new analytical solutions of the Boussinesq-equations. The steady and time-dependent solutions for the temperature and velocity distribution are discussed in detail depending on the mass flux in vertical direction. The range of existence for flows with and without back flow is obtained. The transient behaviour of the solutions during the time-dependent development displays interesting physical behaviour.