• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Klein, Karl-Friedrich (6) (remove)

Year of publication

  • 2001 (2)
  • 2000 (1)
  • 2002 (1)
  • 2007 (1)
  • 2008 (1)

Document Type

  • Article (reviewed) (3)
  • Conference Proceeding (3)

Is part of the Bibliography

  • yes (6) (remove)

Keywords

  • Dünnschichtchromatographie (4)
  • Faseroptik (4)
  • Abtastung (1)
  • Densitometrie (1)
  • Ergänzung (1)
  • Gasanalyse (1)
  • Gerichtliche Wissenschaften (1)
  • Glucosamin (1)
  • Mikrowellentechnik (1)
  • Nahrung (1)
+ more

Institute

  • Fakultät Maschinenbau und Verfahrenstechnik (M+V) (5)
  • Fakultät Elektrotechnik und Informationstechnik (E+I) (1)

6 search hits

  • 1 to 6
  • BibTeX
  • CSV
  • RIS
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
A simple and reliable method for quantification of glucosamine in nutritional supplements (2008)
Bleichert, Michaela ; Eckhardt, Hanns Simon ; Klein, Karl-Friedrich ; Spangenberg, Bernd
HPTLC on amino plates, with simple heating of the plates for derivatization, has been used for quantification of glucosamine in nutritional supplements. On heating the plate glucosamine reacts to form a compound which strongly absorbs light between 305 and 330 nm, with weak fluorescence. The reaction product can be detected sensitively either by absorption of light or by fluorescence detection. The detection limit in absorption mode is approximately 25 ng per spot. In fluorescence mode a detection limit of 15 ng is achievable. A calibration plot for absorption detection is linear in the range 25 to 4000 ng glucosamine. The derivative formed from glucosamine by heating is stable for months, and the relative standard deviation is 1.64% for 600 ng glucosamine. The amounts of glucosamine found in nutritional supplements were in agreement with the label declarations.
Fibre-optic UV systems for gas and vapour analysis (2007)
Eckhardt, Hanns Simon ; Klein, Karl-Friedrich ; Spangenberg, Bernd ; Sun, Tong ; Grattan, Kenneth T.V.
The identification and quantification of compounds in the gas phase becomes of increasing interest in the context of environmental protection, as well as in the analytical field. In this respect, the high extinction coefficients of vapours and gases in the ultraviolet wavelength region allow a very sensitive measurement system. In addition, the increased performance of the components necessary for setting up a measurement system, such as fibres, light sources and detectors has been improved. In particular the light sources and detectors offer improved stability, and the deep UV performance and solarisation resistance of fused silica fibres allow have been significantly optimized in the past years. Therefore a compact and reliable detection system with high measuring accuracy is developed. Within this paper possible applications of the system under development and recent results will be discussed.
High-performance thin layer chromatography using fiber optics and diode-array detection (2002)
Spangenberg, Bernd ; Klein, Karl-Friedrich ; Mannhardt, Joachim
HPTLC (High Performance Thin Layer Chromatography) is a well known and versatile separation method which shows a lot of advantages and options in comparison to other separation techniques. The method is fast and inexpensive and does not need time-consuming pretreatments. Using fiber-optic elements for controlled light-guiding, the TLC-method was significantly improved: the new HPTLC-system is able to measure simultaneously at different wavelengths without destroying the plate surface or the analytes on the surface. For registration of the sample distribution on a HPTLC-plate we developed a new and sturdy diode-array HPTLC- scanner which allows registration of spectra on the TLC- plates in the range of 198 nm to 610 nm with a spectral resolution better than 1.2 nm. The spatial resolution on plate is better than 160 micrometers . In the spectral mode, the new HPTLC-scanner delivers much more information than the commonly used TLC-scanner. The measurement of 450 spectra of one separation track does not need more than three minutes. However, in the fixed wavelength mode the contour plot can be measured within 15 seconds. In this case, the signal will be summarized and averaged over a spectral range having FWHM from 10 nm to 25 nm depending on the substance under test. The new diode-array HPTLC-scanner makes various chemometric applications possible. The new method can be used easily in clinical diagnostic systems easily, e.g. for blood and uring investigations. In addition, new applications are possible. For example, the rich structured PAHs were studied. Although the separation is incomplete the 16 compounds can be quantified using suitable wavelengths.
New evaluation algorithm in diode-array thin-layer chromatography (2001)
Spangenberg, Bernd ; Klein, Karl-Friedrich
In-situ densitometry for qualitative or quantitative purposes is a key step in thin-layer chromatography (TLC). It is a simple means of quantification by measurement of the optical density of the separated spots directly on the plate. A new scanner has been developed which is capable of measuring TLC or HPTLC (high-performance thin-layer chromatography) plates simultaneously at different wavelengths without damaging the plate surface. Fiber optics and special fiber interfaces are used in combination with a diode-array detector. With this new scanner sophisticated plate evaluation is now possible, which enables use of chemometric methods in HPTLC. Different regression models have been introduced which enable appropriate evaluation of all analytical questions. Fluorescent measurements are possible without filters or special lamps and signal-to-noise ratios can be improved by wavelength bundling. Because of the richly structured spectra obtained from PAH, diode-array HPTLC enables quantification of all 16 EPA PAH on one track. Although the separation is incomplete all 16 compounds can be quantified by use of suitable wavelengths. All these aspects are enable substantial improvement of in-situ quantitative densitometric analysis.
TLC-Analysis in forensic sciences using a diode-array detector (2001)
Spangenberg, Bernd ; Ahrens, Björn ; Klein, Karl-Friedrich
HPTLC (High Performance Thin Layer Chromatography) is a well known and versatile separation method which shows many advantages when compared to other separation techniques. The method is fast and inexpensive and does not need time-consuming pretreatments. For visualisation of the sample distribution on a HPTLC-plate we developed a new and sturdy HPTLC-scanner. The scanner allows simultaneous registrations of spectra in a range from 198 nm to 612 nm with a spectral resolution of better than 0.8 nm. The on-plate spatial resolution is better than 160 μm. The measurement of 450 spectra in one separation track does not need more than two minutes. The new diode-array scanner offers a fast survey over a TLC-separation and makes various chemometric applications possible. For compound identification a cross-correlation function is described to compare UV sample spectra with appropriate library data. The cross-correlation function herein described can also be used for purity testing. Unresolved peaks can be virtually separated by use of a least squares fit algorithm. In summary, the diode arry system delivers much more information than the commonly used TLC-scanner.
Fibre optical scanning with high resolution in thin-layer chromatography (2000)
Spangenberg, Bernd ; Klein, Karl-Friedrich
In this paper a high-performance thin-layer chromatography (HPTLC) scanner is presented in which a special fibre arrangement is used as HPTLC plate scanning interface. Measurements are taken with a set of 50 fibres at a distance of 400 to 500 μm above the HPTLC plate. Spatial resolutions on the HPTLC plate of better than 160 μm are possible. It takes less than 2 min to scan 450 spectra simultaneously in a range of 198 to 610 nm. The basic improvement of the item is the use of highly transparent glass fibres which provide excellent transmission at 200 nm and the use of a special fibre arrangement for plate illumination and detection.
  • 1 to 6
  • Imprint
  • Contact
  • Sitelinks
  • Webmaster