Refine
Year of publication
Document Type
- Article (reviewed) (41)
- Conference Proceeding (19)
- Other (5)
- Article (unreviewed) (4)
- Book (1)
- Part of a Book (1)
- Patent (1)
Keywords
- Lithiumbatterie (9)
- Brennstoffzelle (7)
- Batterie (5)
- Elektrochemie (4)
- Hochtemperaturbrennstoffzelle (3)
- Lithium-Ionen-Akkumulator (3)
- Durchfluss (2)
- Elektrode (2)
- Elektrolyt (2)
- Festoxidbrennstoffzelle (2)
A two-dimensional single-phase model is developed for the steady-state and transient analysis of polymer electrolyte membrane fuel cells (PEMFC). Based on diluted and concentrated solution theories, viscous flow is introduced into a phenomenological multi-component modeling framework in the membrane. Characteristic variables related to the water uptake are discussed. A Butler–Volmer formulation of the current-overpotential relationship is developed based on an elementary mechanism of electrochemical oxygen reduction. Validated by using published V–I experiments, the model is then used to analyze the effects of operating conditions on current output and water management, especially net water transport coefficient along the channel. For a power PEMFC, the long-channel configuration is helpful for internal humidification and anode water removal, operating in counterflow mode with proper gas flow rate and humidity. In time domain, a typical transient process with closed anode is also investigated.
The state-of-the-art electrochemical impedance spectroscopy (EIS) calculations have not yet started from fully multi-dimensional modeling. For a polymer electrolyte membrane fuel cell (PEMFC) with long flow channel, the impedance plot shows a multi-arc characteristic and some impedance arcs could merge. By using a step excitation/Fourier transform algorithm, an EIS simulation is implemented for the first time based on the full 2D PEMFC model presented in the first part of this work. All the dominant transient behaviors are able to be captured. A novel methodology called ‘configuration of system dynamics’, which is suitable for any electrochemical system, is then developed to resolve the physical meaning of the impedance spectra. In addition to the high-frequency arc due to charge transfer, the Nyquist plots contain additional medium/low-frequency arcs due to mass transfer in the diffusion layers and along the channel, as well as a low-frequency arc resulting from water transport in the membrane. In some case, the impedance spectra appear partly inductive due to water transport, which demonstrates the complexity of the water management of PEMFCs and the necessity of physics-based calculations.
Fast charging of lithium-ion batteries remains one of the most delicate challenges for the automotive industry, being seriously affected by the formation of lithium metal in the negative electrode. Here we present a physicochemical pseudo-3D model that explicitly includes the plating reaction as side reaction running in parallel to the main intercalation reaction. The thermodynamics of the plating reaction are modeled depending on temperature and ion concentration, which differs from the often-used assumption of a constant plating condition of 0 V anode potential. The reaction kinetics are described with an Arrhenius-type rate law parameterized from an extensive literature research. Re-intercalation of plated lithium was modeled to take place either via reverse plating (solution-mediated) or via an explicit interfacial reaction (surface-mediated). At low temperatures not only the main processes (intercalation and solid-state diffusion) become slow, but also the plating reaction itself becomes slower. Using this model, we are able to predict typical macroscopic experimental observables that are indicative of plating, that is, a voltage plateau during discharge and a voltage drop upon temperature increase. A spatiotemporal analysis of the internal cell states allows a quantitative insight into the competition between intercalation and plating. Finally, we calculate operation maps over a wide range of C-rates and temperatures that allow to assess plating propensity as function of operating condition.
Die Erfindung betrifft eine Photovoltaik-Stromversorgungsvorrichtung, insbesondere vom öffentlichen Stromnetz unabhängige Photovoltaik-Stromversorgungsvorrichtung, mit einem positiven (204) und einem negativen (206) Lastanschluss für den Anschluss einer elektrischen Last, mit einer Mehrzahl von photovoltaischen Zellen (104) und einer wiederaufladbaren Batterie (5), welche wenigstens zwei in Serie geschaltete Batteriezellen (112) umfasst. Nach der Erfindung sind die photovoltaischen Zellen (104) zu einer der Anzahl der Batteriezellen (112) entsprechenden Anzahl von seriell verbundenen Teilstrings (108) verschaltet und jeder Teilstring (108) ist mit einem positiven Teilstringanschluss mit einem Pluspol und mit einem negativen Teilstringanschluss mit einem Minuspol einer zugeordneten Batteriezelle (112) oder mehreren zugeordneten parallel geschalteten Batteriezellen (112) verbunden. Dabei kann jeder Teilstring (108) zwischen dem positiven und negativen Teilstringanschluss eine maximale Leerlaufspannung erzeugen, die kleiner oder gleich einer vorgegebenen Ladeschlussspannung der zugeordneten Batteriezelle (112) oder der zugeordneten parallel geschalteten Batteriezellen (112) ist. Weiterhin betrifft die Erfindung eine Schaltungsanordnung zum Laden einer wiederaufladbaren Batterie, die zur Realisierung einer derartigen Photovoltaik-Stromversorgungsvorrichtung geeignet ist.
Passive hybridization refers to a parallel connection of photovoltaic and battery cells on the direct current level without any active controllers or inverters. We present the first study of a lithium-ion battery cell connected in parallel to a string of four or five serially-connected photovoltaic cells. Experimental investigations were performed using a modified commercial photovoltaic module and a lithium titanate battery pouch cell, representing an overall 41.7 W-peak (photovoltaic)/36.8 W-hour (battery) passive hybrid system. Systematic and detailed monitoring of this system over periods of several days with different load scenarios was carried out. A scaled dynamic synthetic load representing a typical profile of a single-family house was successfully supplied with 100 % self-sufficiency over a period of two days. The system shows dynamic, fully passive self-regulation without maximum power point tracking and without battery management system. The feasibility of a photovoltaic/lithium-ion battery passive hybrid system could therefore be demonstrated.