Refine
Year of publication
- 2014 (23) (remove)
Document Type
- Article (reviewed) (23) (remove)
Language
- English (23) (remove)
Keywords
- Intelligentes Stromnetz (4)
- Elektrolyt (3)
- Lithiumbatterie (3)
- Netzwerk (2)
- Analyse (1)
- Arzneimittel (1)
- Aufbereitung (1)
- BACnet (1)
- Batterie (1)
- Datenbanksystem (1)
A wide range catalyst screening with noble metal and oxide catalysts for a metal–air battery with an aqueous alkaline electrolyte was carried out. Suitable catalysts reduce overpotentials during the charge and discharge process, and therefore improve the round-trip efficiency of the battery. In this case, the electrodes will be used as optimized cathodes for a future lithium–air battery with an aqueous alkaline electrolyte. Oxide catalysts were synthesized via atmospheric plasma spraying. The screening showed that IrO2, RuO2, La0.6Ca0.4Co3, Mn3O4, and Co3O4 are promising bi-functional catalysts. Considering the high price for the noble metal catalysts further investigations of the oxide catalysts were carried out to analyze their electrochemical behavior at varied temperatures, molarities, and in case of La1−x Ca x CoO3 a varying calcium content. Additionally all catalysts were tested in a longterm test to proof cyclability at varied molarities. Further investigations showed that Co3O4 seems to be the most promising bi-functional catalyst of the tested oxide catalysts. Furthermore, it was shown that a calcium content of x = 0.4 in LCCO has the best performance.
We tested the MOF framework Cu-BTC for natural gas (NG) storage. Adsorption isotherms of C1–C4 alkanes were simulated applying the Grand Canonical ensemble and the Monte Carlo algorithm in a classical molecular mechanics approach. Experimental monocomponent isotherm of the alkanes was used to validate the force field. We performed multicomponent adsorptions calculations for three different quaternary mixtures of C1–C4 alkanes, matching typical NG streams composition, and predicted theoretical storage capacities, efficiency and accumulation of the NG within that composition. Despite being one of the frameworks with greatest storage capacity of methane, we found that Cu-BTC presented great sensitivity to the variation of the heavier alkanes in NG composition. When we increase the percentage of butane from 0.1% to 0.7% in the mixture, the mass of components retained in the discharge pressure (1 bar) increases from 35 to 60%. We also perform siting and interaction energy investigations and compare the NG storage performance of the Cu-BTC with that of activated carbons. To our knowledge, this is the first study regarding the efficiency of the NG storage in Cu-BTC.
Private households constitute a considerable share of Europe's electricity consumption. The current electricity distribution system treats them as effectively passive individual units. In the future, however, users of the electricity grid will be involved more actively in the grid operation and can become part of intelligent networked collaborations. They can then contribute the demand and supply flexibility that they dispose of and, as a result, help to better integrate renewable energy in-feed into the distribution grids.
A laser-operated, angle-tunable transducer was employed to excite selectively elastic waves guided along the apex of a solid wedge. The propagation of wedge waves at anisotropic monocrystalline silicon edges with different symmetry properties was studied by optical detection. The reduced symmetry in crystals, as compared to isotropic media, causes a number of new features, such as the existence of supersonic leaky wedge waves, tilted spatial pulse profiles, and other peculiarities of their localization. Experimental and theoretical results are presented for three different types of symmetry configurations: the wedge symmetric about its midplane, the wedge symmetric about the plane normal to its apex line, and the wedge symmetric about one of its faces. The experiments include accurate measurements of the phase velocity and the wave field distribution, providing information on localization and coupling of wedge waves with other waves. Theoretically, the wedge waves were treated by the Laguerre function method, extended to modes that are not localized at the tip of the wedge. This approach allowed an accurate description of the observed localized and leaky wedge waves in anisotropic wedges.
Impedance of the Surface Double Layer of LSCF/CGO Composite Cathodes: An Elementary Kinetic Model
(2014)
We present a two dimensional (2D) planar chromatographic separation of estrogenic active compounds on RP-18 (Merck, 1.05559) and silica gel (Merck, 1.05721) phase. A mixture of 13 substances was separated using a solvent mix consisting of methanol–acetonitrile–water (2 + 2 + 1, v/v/v) on RP-18 phase in the first direction and cyclohexane–butylacetate–methanol (8 + 6 + 1, v/v/v) in the second direction on silica gel plate. Both developments were carried out over a distance of 70 mm. We used the grafted method to combine both plates in a 2D-separation. This 2D-separation method can be used to quantify 17α-ethinylestradiol (EE2) in an effect-directed analysis using the yeast strain Saccharomyces cerevisiae BJ3505. The test strain (according to McDonnell) contains the estrogen receptor. Its activation by estrogen active compounds is measured by inducting the reporter gene lacZ that encodes the enzyme ß-galactosidase. This enzyme activity is determined on plate by using the fluorescent substrate MUG (4-methylumbelliferyl ß-D-galactopyranoside).