Refine
Document Type
- Conference Proceeding (70)
- Article (reviewed) (51)
- Bachelor Thesis (15)
- Article (unreviewed) (15)
- Master's Thesis (12)
- Letter to Editor (10)
- Book (6)
- Contribution to a Periodical (6)
- Part of a Book (5)
- Other (5)
- Patent (5)
- Doctoral Thesis (2)
- Moving Images (1)
- Report (1)
- Working Paper (1)
Language
- English (139)
- German (63)
- Other language (1)
- Multiple languages (1)
- Russian (1)
Keywords
- Götz von Berlichingen (7)
- Heart rhythm model (5)
- Herzrhythmusmodell (5)
- Machine Learning (5)
- Modeling and simulation (5)
- Regelungstechnik (4)
- Robotik (3)
- 3D computer-aided design (2)
- 3D multi-material polymer printing (2)
- Ablation (2)
Institute
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (205) (remove)
Data Science
(2019)
Data Science steht derzeit wie kein anderer Begriff für die Auswertung großer Datenmengen mit analytischen Konzepten des Machine Learning oder der künstlichen Intelligenz. Nach der bewussten Wahrnehmung der Big Data und dabei insbesondere der Verfügbarmachung in Unternehmen sind Technologien und Methoden zur Auswertung dort gefordert, wo klassische Business Intelligence an ihre Grenzen stößt.
Dieses Buch bietet eine umfassende Einführung in Data Science und deren praktische Relevanz für Unternehmen. Dabei wird auch die Integration von Data Science in ein bereits bestehendes Business-Intelligence-Ökosystem thematisiert. In verschiedenen Beiträgen werden sowohl Aufgabenfelder und Methoden als auch Rollen- und Organisationsmodelle erläutert, die im Zusammenspiel mit Konzepten und Architekturen auf Data Science wirken. Neben den Grundlagen werden unter anderem folgende Themen behandelt:
- Data Science und künstliche Intelligenz
- Konzeption und Entwicklung von Data-driven Products
- Deep Learning
- Self-Service im Data-Science-Umfeld
- Data Privacy und Fragen zur digitalen Ethik
- Customer Churn mit Keras/TensorFlow und H2O
- Wirtschaftlichkeitsbetrachtung bei der Auswahl und Entwicklung von Data Science
- Predictive Maintenance
- Scrum in Data-Science-Projekten
Zahlreiche Anwendungsfälle und Praxisbeispiele geben Einblicke in die aktuellen Erfahrungen bei Data-Science-Projekten und erlauben dem Leser einen direkten Transfer in die tägliche Arbeit.
PET and SPECT in Psychiatry
(2021)
This book provides a comprehensive overview of the use of PET and SPECT in the classic psychiatric disorders such as depression, bipolar disorder, anxiety disorders, and schizophrenia. In addition, it discusses the application of these functional neuroimaging techniques in a variety of other conditions, including sleep disorders, eating disorders, autism, and chronic fatigue syndrome. The new edition has been extensively revised and updated to reflect the latest advances and results in nuclear imaging within the field. Most chapters are written jointly by a clinical psychiatrist and a nuclear medicine expert to ensure a multidisciplinary approach. This state of the art compendium will be of value for all who have an interest in the field of neuroscience, from psychiatrists and radiologists/nuclear medicine specialists to interested general practitioners and cognitive psychologists. Companion volumes on the use of PET and SPECT in neurology and for the imaging of neurobiological systems complete a trilogy.
PET and SPECT in Neurology
(2021)
This book provides a comprehensive overview of the use of PET and SPECT in not only classic neurodegenerative disorders but also cerebrovascular disorders, brain tumors, epilepsy, head trauma, coma, sleeping disorders, and inflammatory and infectious diseases of the CNS. The new edition has been revised and updated to reflect recent advances and includes additional chapters, for example on the use of artificial intelligence and machine learning in imaging data analysis, the study of brain connectivity using PET and SPECT images, and the role of PET imaging in modulation of brain functioning by deep brain stimulation. The authors are renowned experts whose dedication to the investigation of neurological disorders through nuclear medicine technology has achieved international recognition. Most chapters are written jointly by a clinical neurologist and a nuclear medicine specialist to ensure a multidisciplinary approach. This state of the art compendium will be invaluable for neurologists and radiologists/nuclear medicine specialists and will also be informative for interested general practitioners and geriatricians. Companion volumes on PET and SPECT in psychiatry and in neurobiological systems complete a trilogy.
The number of use cases for autonomous vehicles is increasing day by day especially in commercial applications. One important application of autonomous vehicles can be found within the parcel delivery section. Here, autonomous cars can massively help to reduce delivery efforts and time by supporting the courier actively. One important component of course is the autonomous vehicle itself. Nevertheless, beside the autonomous vehicle, a flexible and secure communication architecture also is a crucial key component impacting the overall performance of such system since it is required to allow continuous interactions between the vehicle and the other components of the system. The communication system must provide a reliable and secure architecture that is still flexible enough to remain practical and to address several use cases. In this paper, a robust communication architecture for such autonomous fleet-based systems is proposed. The architecture provides a reliable communication between different system entities while keeping those communications secure. The architecture uses different technologies such as Bluetooth Low Energy (BLE), cellular networks and Low Power Wide Area Network (LPWAN) to achieve its goals.
With the surge in global data consumption with proliferation of Internet of Things (IoT), remote monitoring and control is increasingly becoming popular with a wide range of applications from emergency response in remote regions to monitoring of environmental parameters. Mesh networks are being employed to alleviate a number of issues associated with single-hop communication such as low area coverage, reliability, range and high energy consumption. Low-power Wireless Personal Area Networks (LoWPANs) are being used to help realize and permeate the applicability of IoT. In this paper, we present the design and test of IEEE 802.15.4-compliant smart IoT nodes with multi-hop routing. We first discuss the features of the software stack and design choices in hardware that resulted in high RF output power and then present field test results of different baseline network topologies in both rural and urban settings to demonstrate the deployability and scalability of our solution.
In dieser Bachelorthesis wurde ein Funktionsmuster eines energieautarken elektronischen Türschildes mit einem 7,8” großen E-Paper-Display und NFC-Konfigurationsschnittstelle entwickelt, auf dem per Smartphone-App und NFC einfach Informationen wie Abwesendheitsnachrichten angezeigt werden können. Hierzu wird ein Kommunikationsprotokoll entwickelt, welches die Kommunikation zwischen App und Türschild spezifiziert, und einen Befehlssatz zur Konfiguration des Türschildes bereitstellt. Das System wird aus amorphen Silizium-Solarzellen versorgt und verfügt über einen LiPo-Akku als Energiespeicher. Durch sorgfältiges Hardware- und Software-seitiges Low-Power-Design beträgt die Leistungsaufnahme im Ruhemodus lediglich 1, 5 μW. Bedingt durch den anwenderfreundlichen, jedoch für Low-Power-Designs ungeeigneten Display-Controller, beträgt der Energieverbrauch während eines Updates 300 mW. Trotzdem zeigt sich, dass das System bei einer Zellfläche von knapp 220 cm2 auch bei schlechter Beleuchtung von 10 lx in dunklen Gängen mehrere Türschild-Updates pro Tag bereitstellen kann.
Elektronische Türschilder zur Darstellung von Informationen sind insbesondere in öffentlichen Gebäuden zwischenzeitlich weit verbreitet. Die Varianz dieser elektronischen Türschilder reicht vom Tablet-basierten Türschild bis hin zum PC-basierten Türschild mit externem Bildschirm. Zumeist werden die Systeme mit 230 V betrieben. Bei einer großen Summe von Türschildern in öffentlichen Gebäuden kann dies zu einem signifikanten Umsatz an Energie führen. Im Rahmen dieses Papers wird die Entwicklung eines energieautarken arbeiten Türschildes vorgestellt, bei dem ein E-Paper-Display zum Einsatz kommt. Das Türschild lässt sich per Smartphone-App und NFC-Schnittstelle konfigurieren. Es wird insbesondere auf das Low-Power-Hardware-Design der Elektronik und energetische Aspekte eingegangen.
Bei bimodaler Cochlea-Implantat-/Hörgerät-Versorgung kann es aufgrund seitenverschiedener Signalverarbeitung zu einer zeitlich versetzten Stimulation der beiden Modalitäten kommen. Jüngste Studien haben gezeigt, dass durch zeitlichen Abgleich der Modalitäten die Schalllokalisation bei bimodaler Versorgung verbessert werden kann. Um solch einen Abgleich vornehmen zu können, ist die messtechnische Bestimmung der Durchlaufzeit von Hörgeräten erforderlich. Kommerziell verfügbare Hörgerätemessboxen können diese Werte häufig liefern. Die dazu verwendete Signalverarbeitung wird dabei aber oft nicht vollständig offengelegt. In dieser Arbeit wird ein alternativer und nachvollziehbarer Ansatz zum Design eines simplen Messaufbaus basierend auf einem Arduino DUE Mikrocontroller-Board vorgestellt. Hierzu wurde ein Messtisch im 3D-Druck gefertigt, auf welchem Hörgeräte über einen 2-ccm-Kuppler an ein Messmikrofon angeschlossen werden können. Über einen Latenzvergleich mit dem simultan erfassten Signal eines Referenzmikrofons kann die Durchlaufzeit von Hörgeräten bestimmt werden. Frequenzspezifische Durchlaufzeiten werden mittels einer Kreuzkorrelation zwischen Ziel- und Referenzsignal errechnet. Aufnahme, Ausgabe und Speicherung der Signale erfolgt über einen ATMEL SAM3X8E Mikrocontroller, welcher auf dem Arduino DUE-Board verbaut ist. Über eigens entworfene elektronische Schaltungen werden die Mikrofone und der verwendete Lautsprecher angesteuert. Nach Abschluss einer Messung (Messdauer ca. 5 s) werden die Messdaten seriell an einen PC übertragen, auf dem die Datenauswertung mittels MATLAB erfolgt. Erste Validierungen zeigten eine hohe Stabilität der Messergebnisse mit sehr geringen Standardabweichungen im Bereich weniger Mikrosekunden für Pegel zwischen 50 und 75 dB (A). Der Messaufbau wird in laufenden Studien zur Quantifizierung der Durchlaufzeit von Hörgeräten verwendet.
Background: This paper presents a novel approach for a hand prosthesis consisting of a flexible, anthropomorphic, 3D-printed replacement hand combined with a commercially available motorized orthosis that allows gripping.
Methods: A 3D light scanner was used to produce a personalized replacement hand. The wrist of the replacement hand was printed of rigid material; the rest of the hand was printed of flexible material. A standard arm liner was used to enable the user’s arm stump to be connected to the replacement hand. With computer-aided design, two different concepts were developed for the scanned hand model: In the first concept, the replacement hand was attached to the arm liner with a screw. The second concept involved attaching with a commercially available fastening system; furthermore, a skeleton was designed that was located within the flexible part of the replacement hand.
Results: 3D-multi-material printing of the two different hands was unproblematic and inexpensive. The printed hands had approximately the weight of the real hand. When testing the replacement hands with the orthosis it was possible to prove a convincing everyday functionality. For example, it was possible to grip and lift a 1-L water bottle. In addition, a pen could be held, making writing possible.
Conclusions: This first proof-of-concept study encourages further testing with users.
Ziel der Thesis war zuerst eine kurze Literatur-Recherche und eine Einarbeitung in die Automatisierungstechnik (insbesondere in Robotik, speicherprogrammierbare Steuerungen, Bildverarbeitung und Kommunikationsmöglichkeiten), dann die Konzeption und der Aufbau eine Schulungszelle, mit der die Studenten in die Praxis umsetzen können, was sie im Labor gelernt haben und am Ende die Herstellung von Schulungsunterlagen.
Dafür wurde eine mehrstufige Lösung ausgewählt und betrachtet. Diese Lösung besteht in erster Linie in der Erforschung über die verschiedenen verfügbaren Komponenten. das heißt, die Bedienung und die Programmierung eines Universalroboters(UR5e), einer Sensopart-Kamera, eines Wago-PLC mit der Festo Pick-Place didaktisch Station und natürlich die Steuerung ihrer verschiedenen Software zu beherrschen. Dann folgen die Konzeption und der Aufbau der Schulungszelle, die Programmierung einer didaktischen Applikation, die den Studenten als Beispiel dient, und schließlich die Erstellung einer Anleitung dieser Applikation.
Um die Akzeptanz und Relevanz von Mailings zu steigern, ist es für Unternehmen wichtig, die Kundeninteressen möglichst gezielt anzusprechen. Bereits jetzt wird die E-Mail-Marketing Lösung Inxmail Professional zusammen mit Recommender Systemen eingesetzt, was das Erstellen und Versenden von E-Mails mit personalisierten Produktempfehlungen ermöglicht. Das notwendige Wissen für den Aufbau und den Betrieb dieser Recommender Systeme liegt dabei jedoch bei (externen) Technologie-Partnern, wodurch höhere Kosten und zusätzliche Abhängigkeiten für Inxmail und seine Kunden entstehen.
Mit dieser Arbeit wurde erforscht, was es für das Unternehmen Inxmail bedeutet, mit Open-Source-Software ein eigenständiges Recommender System aufzubauen und in die E-Mail-Marketing Lösung Inxmail Professional zu integrieren. Hierfür wird Inxmail Professional in einem typischen Kontext mit einem angebundenen Onlineshop System betrachtet. Das Recommender System soll anhand der Daten, die es aus dem Onlineshop System bekommt, individuelle Produktempfehlungen berechnen, um diese automatisiert beim Versand für jeden Empfänger abfragen und in die E-Mail integrieren zu können.
Auf Basis des Machine Learning Servers Harness und der integrierten Universal Recommender Engine wurde ein Recommender System aufgebaut.
Für die Integration des Onlineshop Systems Shopware wurde ein Plugin entwickelt, welches das Recommender System über alle relevanten Benutzeraktionen benachrichtigt. Die Inxmail Professional Integration basiert auf einem Webservice, der implementiert wurde, um die individuellen Produktempfehlungen für einen Kunden/Empfänger beim Recommender System abzufragen und mit den Detailinformationen zu den Produkten aus dem Onlineshop aufzubereiten.
Es konnte gezeigt werden, dass auf der Grundlage von Open-Source-Technologien ein eigenständiges Recommender System aufgebaut, evaluiert und in Inxmail Professional mit angebundenem Onlineshop System integriert werden kann. Der Gesamtprozess für die Evaluation des Systems wurde weitestgehend automatisiert, wodurch viele manuelle und zeitintensive Schritte über Steuerungsskripte abgehandelt werden können. Das System erlaubt die reibungslose Verarbeitung großer Datenmengen (> 19.000.000 Events) auf einem einzelnen Server. Die Vorhersagequalität wurde anhand realer Interaktionsdaten aus öffentlichen E-Commerce-Datensätzen mit Offline-Tests gemessen. Dadurch wurde sichergestellt, dass das System in der Lage ist, bei stetig wachsender Eventmenge zuverlässige aufempfehlungen zu berechnen. Die Tests haben gezeigt, dass bei mehreren Millionen Events von mehreren Tausend Benutzern für mehrere Tausend Produkte, 13 % bis 15 % aller tatsächlichen Käufe in den Top-10 der vom System vorgeschlagenen Empfehlungen enthalten waren.
Damit wurde die Grundlage für den selbstständigen Aufbau und Betrieb eines Recommender Systems gelegt, was eine sinnvolle und kostengünstige Alternative zu externen Systemen sein kann.
In den letzten Jahrzehnten haben permanentmagneterregte Synchronmaschinen und deren Regelung immer mehr Einzug in industrielle Applikationen erhalten. Durch die weltweit wachsende Elektromobilität partizipiert das Automobil an deren fortschreitenden Einsatzmöglichkeit.
Die Modellierung eines physikalisch-technischen Systems ist ein wichtiger Bestandteil in der Entwicklung einer Regelung. Inhaltlich setzt sich die Abschlussarbeit mit dieser Vorgehensweise für eine 6-phasige permanentmagneterregte Synchronmaschine auseinander. Durch die doppelte Anzahl an Statorwicklungen existieren unter anderem zwei verschiedene Wicklungskonzepte, wie eine elektrische Maschine aufgebaut sein könnte. Beide Wicklungskonzepte, bei dem entweder eine volle magnetische Kopplung oder keine magnetische Kopplung der betrachteten Teilsysteme vorliegt, werden untersucht. Ziel der Masterthesis ist es, eine mathematische Grundlage für die Modellbildung einer 6-phasigen permanentmagneterregten Synchronmaschine herzuleiten, um darauf aufbauend eine feldorientierte Regelung zu entwerfen. Wie in der industriellen Antriebstechnik gebräuchlich, erfolgt die Regelung in einem rotierenden Koordinatensystem. Die Stromregelung basiert auf einen zeitkontinuierlichen PI-Regler samt Spannungsbegrenzung und einer Anti-Windup-Struktur. In der Ausarbeitung wird mithilfe zweier Simulationsmodelle bewiesen, dass sowohl das mathematische Modell einer 6-phasigen permanentmagneterregten Synchronmaschine als auch deren Regelung simulationstechnisch die erwarteten Resultate liefern.
Da die hohe Anzahl an Steuergeräten in einem Fahrzeug von den unterschiedlichsten Automobilzulieferern entwickelt und produziert werden, ist es den einzelnen Steuergeräte-Herstellern nicht möglich, diese während des Entwicklungsprozesses in einem realen Fahrzeug zu testen. Restbussimulationen, womit Fahrzeugnetzwerke softwaretechnisch nachgebaut werden, schaffen hierbei Abhilfe.
Für die Entwicklung konkurrenzfähiger, effizienter und wirtschaftlicher Steuergerätesoftware wird die Embedded Software in einzelne Module unterteilt. Dieser modulare Prozess ermöglicht das Implementieren der Embedded Softwaremodule in Steuergeräte unterschiedlicher Fahrzeughersteller, sodass es zu Kosteneinsparungen während der Entwicklung und Wartung kommt. Steuergeräte, welche in unterschiedlichen Fahrzeugen zum Einsatz kommen und eine hohe Anzahl an gleichen Softwaremodulen besitzen, werden in sogenannten „Plattformen“ gehandelt.
Im Rahmen dieser Arbeit wird, analog zu der Plattformsoftware der Steuergeräte eine Plattform-Restbussimulation entworfen. Sie stellt dem Softwareentwickler während des kompletten Entwicklungszyklus eine lauffähige Testumgebung zur Verfügung, welche wichtige Steuergeräte eines Fahrzeugnetzwerks nachbildet. So werden in dieser Arbeit Konzepte erstellt und implementiert, welche eine effiziente und intuitive Benutzung der Plattform-Restbussimulation ermöglichen und alle Plattformkunden mit einer einzigen Simulationsumgebung abdecken. Dies führt zu einer zeitlichen Einsparung bei der Implementierung, Verwaltung und Bedienung.
Ziel dieses Projekt war, an einem existierenden, funktionierenden und LabVIEW-programmierten Roboter Verbesserungen durchzuführen, damit er stabiler, robuster, einfacher zu benutzen ist, und damit er in seinen Aktionen wiederholbar ist. Der Roboter wurde aus dem Starter-Pack von National Instruments (NI) gebaut, der ein MyRIO-Programmiergerät enthält. Dieses lässt sich in einer graphischen Programmierungssprache (LabVIEW) programmieren, die mehrere Aktionen parallel durchführen kann und in der Industrie weit verbreitet ist. Der Roboter wurde von einem vorherigen Team schon begonnen und konzipiert und besteht aus 3 Etagen, die die Motoren, die mechanischen Teilen und das elektronische Material behalten. Die Mechanik und die Elektronik waren funktionell, aber weder robust noch dauerhaft. Die Programmierung enthielt einige Fehler, die zuerst korrigiert werden mussten. Eine Zeit war nötig, um die vorherigen technischen Lösungen anzuschauen und um sich mit der Programmierung in LabVIEW vertraut zu machen. Dann wurde vor dem ersten Wettbewerb das System für die Aufgabe der Sortierung der Bälle mit einer opaken 3D-bedruckten Abdeckung ausgestattet, um den lichtempfindlichen Sensor vor Licht zu schützen und die vorige Alufolie mit einer robusten Lösung zu ersetzen. Unser Team, das aus drei bis fünf Studenten (abhängig von den Semestern) besteht, hat am 4. Oktober 2018 an einem Wettbewerb der Firma National Instruments teilgenommen, bei dem ein Roboter verschiedene Aktionen selbstständig auf einer Strecke durchführen soll. Ziel dieses Wettbewerbs ist es, die Teamarbeit und die Produkte von National Instruments durch den Bau eines Roboters und dessen Programmierung aus einem MyRIO-Gerät zu fördern. Der Wettbewerb fand bei der Veranstaltung „NI Days“ statt und sah fünf Teams französischer Studenten gegeneinander antreten. Unser Roboter gewann den ersten Platz im Wettbewerb, indem er die meisten Punkte in den Runden erzielte. Nach dem Wettbewerb wurde der Schwerpunkt auf die Mechanik und die Programmierung gelegt, da es noch Probleme gab und um die technischen Lösungen des Roboters robuster zu machen. Dabei wurden Schutzteile von Liniensensoren konzipiert und die Dimensionierung des Arms für die Aufgabe der Rohre begonnen, was danach von einem anderen Teammitglieder weitergeführt wurde. Bezüglich der Programmierung wurde das Frontpanel komplett geändert und die Klarheit des Programms anhand von Kommentaren und Beschreibungen verbessert, um das Programm einfacher und benutzerfreundlicher zu machen. Danach wurden die Probleme der Datei gelöst, die die Zustände des Roboters im Embedded Modus aufschreibt, damit wir Informationen haben, wenn es auf der Strecke einen Fehler gab. Schließlich galt es, die Regelung der Hauptmotoren des Roboters zu verbessern, um seine Verfahrgeschwindigkeit zu erhöhen und gleichzeitig sicherzustellen, dass er die Linie nicht verlässt. Dieses ermöglichte, die Ausführungsgeschwindigkeit der Strecke zu erreichen, die 1,4-mal höher war als die vorherige Geschwindigkeit. Am Ende dieser Arbeit wird ein neues Team von drei bis fünf Studenten das Projekt übernehmen, um sich auf den nächsten Wettbewerb vorzubereiten und den Roboter weiter zu verbessern.
Annotated training data is essential for supervised learning methods. Human annotation is costly and laborsome especially if a dataset consists of hundreds of thousands of samples and annotators need to be hired. Crowdsourcing emerged as a solution that makes it easier to get access to large amounts of human annotators. Introducing paid external annotators however introduces malevolent annotations, both intentional and unintentional. Both forms of malevolent annotations have negative effects on further usage of the data and can be summarized as spam. This work explores different approaches to post-hoc detection of spamming users and which kinds of spam can be detected by them. A manual annotation checking process resulted in the creation of a small user spam dataset which is used in this thesis. Finally an outlook for future improvements of these approaches will be made.
In Unternehmen entstehen beim Prozess der digitalen Transformation stetig neue Anwendungen und Auswertungen. Es wird viel Zeit und Geld in digitale Lösungen investiert, die das Arbeitsumfeld verbessern. Die Plattformen zur Verwaltung und Verteilung dieser werden dabei jedoch häufig vernachlässigt.
Ziel dieser Arbeit ist es eine solche Plattform in Form eines App-Stores für den Standort zu entwickeln. Dabei liegt der Fokus auf der Verbesserung der App-Nutzung, was durch eine nutzerfreundliche Oberfläche für Endanwender und Entwickler erreicht werden soll. Weiterhin ist eine hohe Wartbarkeit der Plattform notwendig, damit sie auch von einem kleinen Team betrieben werden kann.
Zunächst wurde analysiert, welche Architektur und Technologien für die Umsetzung gut geeignet und welche vom Unternehmen vorgegeben sind. Dabei stellte sich heraus, dass eine Microservice-Architektur am besten geeignet ist. Als Technologie stand lediglich das Framework zur Frontendimplementierung zur Wahl, hier war Angular am besten geeignet.
Durch die Verwendung eines iterativen Prozesses konnten bereits zu Beginn die späteren Nutzer in die Entwicklung eingebunden werden. Dies ermöglichte das Ermitteln aller Anforderungen und Entwerfen einer nutzerfreundlichen Oberfläche. Dieses iterative Vorgehen wurde auch während der Implementierung eingesetzt. Dazu wurden mit Testdaten befüllte Versionen bereitgestellt, damit Nutzer frühzeitig Rückmeldung geben konnten.
The status quo of PROFINET, a commonly used industrial Ethernet standard, provides no inherent security in its communication protocols. In this thesis an approach for protecting real-time PROFINET RTC messages against spoofing, tampering and optionally information disclosure is specified and implemented into a real-world prototype setup. Therefor authenticated encryption is used, which relies on symmetric cipher schemes. In addition a procedure to update the used symmetric encryption key in a bumpless manner, e.g. without interrupting the real-time communication, is introduced and realized.
The concept for protecting the PROFINET RTC messages was developed in collaboration with a task group within the security working group of PROFINET International. The author of this thesis has also been part of that task group. This thesis contributes by proofing the practicability of the concept in a real-world prototype setup, which consists of three FPGA-based development boards that communicate with each other to showcase bumpless key updates.
To enable a bumpless key update without disturbing the deterministic real-time traffic by dedicated messages, the key update annunciation and status is embedded into the header. By provisioning two key slots, of which only one is in used, while the other is being prepared, a well-synchronized coordinated switch between the receiver and the sender performs the key update.
The developed prototype setup allows to test the concept and builds the foundation for further research and implementation activities, e.g. the impact of cryptographic operations onto the processing time.
Electrolyte-gated thin-film transistors (EGTs) with indium oxide channel, and expected lifetime of three months, enable low-voltage operation (~1 V) in the field of printed electronics (PEs). The channel width of our printed EGTs is varied between 200 and 1000 μm, whereas a channel length between 10 and 100 μm is used. Due to the lack of uniform performance p-type metal oxide semiconductors, n-type EGTs and passive elements are used to design circuits. For logic gates, transistor-resistor logic has been employed so far, but depletion and enhancement-mode EGTs in a transistor-transistor logic boost the circuit performance in terms of delay and signal swing. In this article, the threshold voltage of the EGT, which determines the operation mode, is tuned through sizing of the EGTs channel geometry. The feasibility of both transistor operation modes is demonstrated for logic gates and ring oscillators. An inverter operating at a supply voltage of 1 V shows a maximum gain of 9.6 and a propagation delay time of 0.7 ms, which represents an improvement of ~ 2x for the gain and oscillation frequency, in comparison with the resistor-transistor logic design. Moreover, the power consumption is reduced by 6x.
Oxide semiconductors have the potential to increase the performance of inkjet printed microelectronic devices such as field-effect transistors (FETs), due to their high electron mobilities. Typical metal oxides are n-type semiconductors, while p-type oxides, although realizable, exhibit lower carriermobilities. Therefore, the circuit design based on oxide semiconductors is mostly in n-type logic only. Here we present an inkjet printed pn-diode based on p- and n-type oxide semiconductors.Copper oxide or nickel oxide is used as p-typesemiconductor whereas n-typesemiconductor is realized with indium oxide. Themeasurements show that the pn-diodes operate in the voltage window typical for printed electronics and the emission coefficient is 1.505 and 2.199 for the copper oxide based and nickel oxidebased pn-diode, respectively.Furthermore, a pn-diode model is developed and integrable into a circuit simulator.
In the domain of printed electronics (PE), field-effect transistors (FETs) with an oxide semiconductor channel are very promising. In particular, the use of high gate-capacitance of the composite solid polymer electrolytes (CSPEs) as a gate-insulator ensures extremely low voltage requirements. Besides high gate capacitance, such CSPEs are proven to be easily printable, stable in air over wide temperature ranges, and possess high ion conductivity. These CSPEs can be sensitive to moisture, especially for high surface-to-volume ratio printed thin films. In this paper, we provide a comprehensive experimental study on the effect of humidity on CSPE-gated single transistors. At the circuit level, the performance of ring oscillators (ROs) has been compared for various humidity conditions. The experimental results of the electrolyte-gated FETs (EGFETs) demonstrate rather comparable currents between 30%-90% humidity levels. However, the shifted transistor parameters lead to a significant performance change of the RO frequency behavior. The study in this paper shows the need of an impermeable encapsulation for the CSPE-gated FETs to ensure identical performance at all humidity conditions.
Printed electrolyte-gated oxide electronics is an emerging electronic technology in the low voltage regime (≤1 V). Whereas in the past mainly dielectrics have been used for gating the transistors, many recent approaches employ the advantages of solution processable, solid polymer electrolytes, or ion gels that provide high gate capacitances produced by a Helmholtz double layer, allowing for low-voltage operation. Herein, with special focus on work performed at KIT recent advances in building electronic circuits based on indium oxide, n-type electrolyte-gated field-effect transistors (EGFETs) are reviewed. When integrated into ring oscillator circuits a digital performance ranging from 250 Hz at 1 V up to 1 kHz is achieved. Sequential circuits such as memory cells are also demonstrated. More complex circuits are feasible but remain challenging also because of the high variability of the printed devices. However, the device inherent variability can be even exploited in security circuits such as physically unclonable functions (PUFs), which output a reliable and unique, device specific, digital response signal. As an overall advantage of the technology all the presented circuits can operate at very low supply voltages (0.6 V), which is crucial for low-power printed electronics applications.
Current training methods for deep neural networks boil down to very high dimensional and non-convex optimization problems which are usually solved by a wide range of stochastic gradient descent methods. While these approaches tend to work in practice, there are still many gaps in the theoretical understanding of key aspects like convergence and generalization guarantees, which are induced by the properties of the optimization surface (loss landscape). In order to gain deeper insights, a number of recent publications proposed methods to visualize and analyze the otimization surfaces. However, the computational cost of these methods are very high, making it hardly possible to use them on larger networks. In this paper, we present the GradVis Toolbox, an open source library for efficient and scalable visualization and analysis of deep neural network loss landscapes in Tesorflow and PyTorch. Introducing more efficient mathematical formulations and a novel parallelization scheme, GradVis allows to plot 2d and 3d projections of optimization surfaces and trajectories, as well as high resolution second order gradient information for large networks.
In this work a method for the estimation of current slopes induced by inverters operating interior permanent magnet synchronous machines is presented. After the derivation of the estimation algorithm, the requirements for a suitable sensor setup in terms of accuracy, dynamic and electromagnetic interference are discussed. The boundary conditions for the estimation algorithm are presented with respect to application within high power traction systems. The estimation algorithm is implemented on a field programmable gateway array. This moving least-square algorithm offers the advantage that it is not dependent on vectors and therefore not every measured value has to be stored. The summation of all measured values leads to a significant reduction of the required storage units and thus decreases the hardware requirements. The algorithm is designed to be calculated within the dead time of the inverter. Appropriate countermeasures for disturbances and hardware restrictions are implemented. The results are discussed afterwards.
A Novel Approach of High Dynamic Current Control of Interior Permanent Magnet Synchronous Machines
(2019)
Harmonic-afflicted effects of permanent magnet synchronous machines with high power density are hardly faced by traditional current PI controllers, due to limited controller bandwidth. As a consequence, currents and lastly torque ripples appear. In this paper, a new deadbeat current controller architecture has been presented, which is capable to encounter the effects of these harmonics. This new control algorithm, here named “Hybrid-Deadbeat-Controller”, combines the stability and the low steady-state errors offered by common PI regulators with the high dynamic offered by the deadbeat control. Therefore, a novel control algorithm is proposed, capable of either compensating the current harmonics in order to get smoother currents or to control a varying reference value to achieve a smoother torque. The information needed to calculate the optimal reference currents is based on an online parameter estimation feeding an optimization algorithm to achieve an optimal torque output and will be investigated in future research. In order to ensure the stability of the controller over the whole area of operation even under the influence of effects changing the system’s parameter, this work as well focusses on the robustness of the “hybrid” dead beat controller.
Preface
(2021)
Dissertation D. Dongol
This paper presents the use of model predictive control (MPC) based
approach for peak shaving application of a battery in a Photovoltaic (PV) battery
system connected to a rural low voltage gird. The goals of the MPC are to shave
the peaks in the PV feed-in and the grid power consumption and at the same
time maximize the use of the battery. The benefit to the prosumer is from the
maximum use of the self-produced electricity. The benefit to the grid is from the
reduced peaks in the PV feed-in and the grid power consumption. This would
allow an increase in the PV hosting and the load hosting capacity of the grid.
The paper presents the mathematical formulation of the optimal control problem
along with the cost benefit analysis. The MPC implementation scheme in the
laboratory and experiment results have also been presented. The results show
that the MPC is able to track the deviation in the weather forecast and operate
the battery by solving the optimal control problem to handle this deviation.
Generative adversarial networks (GANs) provide state-of-the-art results in image generation. However, despite being so powerful, they still remain very challenging to train. This is in particular caused by their highly non-convex optimization space leading to a number of instabilities. Among them, mode collapse stands out as one of the most daunting ones. This undesirable event occurs when the model can only fit a few modes of the data distribution, while ignoring the majority of them. In this work, we combat mode collapse using second-order gradient information. To do so, we analyse the loss surface through its Hessian eigenvalues, and show that mode collapse is related to the convergence towards sharp minima. In particular, we observe how the eigenvalues of the G are directly correlated with the occurrence of mode collapse. Finally, motivated by these findings, we design a new optimization algorithm called nudged-Adam (NuGAN) that uses spectral information to overcome mode collapse, leading to empirically more stable convergence properties.
Generative adversarial networks are the state of the art approach towards learned synthetic image generation. Although early successes were mostly unsupervised, bit by bit, this trend has been superseded by approaches based on labelled data. These supervised methods allow a much finer-grained control of the output image, offering more flexibility and stability. Nevertheless, the main drawback of such models is the necessity of annotated data. In this work, we introduce an novel framework that benefits from two popular learning techniques, adversarial training and representation learning, and takes a step towards unsupervised conditional GANs. In particular, our approach exploits the structure of a latent space (learned by the representation learning) and employs it to condition the generative model. In this way, we break the traditional dependency between condition and label, substituting the latter by unsupervised features coming from the latent space. Finally, we show that this new technique is able to produce samples on demand keeping the quality of its supervised counterpart.
Generative convolutional deep neural networks, e.g. popular GAN architectures, are relying on convolution based up-sampling methods to produce non-scalar outputs like images or video sequences. In this paper, we show that common up-sampling methods, i.e. known as up-convolution or transposed convolution, are causing the inability of such models to reproduce spectral distributions of natural training data correctly. This effect is independent of the underlying architecture and we show that it can be used to easily detect generated data like deepfakes with up to 100% accuracy on public benchmarks. To overcome this drawback of current generative models, we propose to add a novel spectral regularization term to the training optimization objective. We show that this approach not only allows to train spectral consistent GANs that are avoiding high frequency errors. Also, we show that a correct approximation of the frequency spectrum has positive effects on the training stability and output quality of generative networks.
Deep generative models have recently achieved impressive results for many real-world applications, successfully generating high-resolution and diverse samples from complex datasets. Due to this improvement, fake digital contents have proliferated growing concern and spreading distrust in image content, leading to an urgent need for automated ways to detect these AI-generated fake images.
Despite the fact that many face editing algorithms seem to produce realistic human faces, upon closer examination, they do exhibit artifacts in certain domains which are often hidden to the naked eye. In this work, we present a simple way to detect such fake face images - so-called DeepFakes. Our method is based on a classical frequency domain analysis followed by basic classifier. Compared to previous systems, which need to be fed with large amounts of labeled data, our approach showed very good results using only a few annotated training samples and even achieved good accuracies in fully unsupervised scenarios. For the evaluation on high resolution face images, we combined several public datasets of real and fake faces into a new benchmark: Faces-HQ. Given such high-resolution images, our approach reaches a perfect classification accuracy of 100% when it is trained on as little as 20 annotated samples. In a second experiment, in the evaluation of the medium-resolution images of the CelebA dataset, our method achieves 100% accuracy supervised and 96% in an unsupervised setting. Finally, evaluating a low-resolution video sequences of the FaceForensics++ dataset, our method achieves 91% accuracy detecting manipulated videos.
The term attribute transfer refers to the tasks of altering images in such a way, that the semantic interpretation of a given input image is shifted towards an intended direction, which is quantified by semantic attributes. Prominent example applications are photo realistic changes of facial features and expressions, like changing the hair color, adding a smile, enlarging the nose or altering the entire context of a scene, like transforming a summer landscape into a winter panorama. Recent advances in attribute transfer are mostly based on generative deep neural networks, using various techniques to manipulate images in the latent space of the generator.
In this paper, we present a novel method for the common sub-task of local attribute transfers, where only parts of a face have to be altered in order to achieve semantic changes (e.g. removing a mustache). In contrast to previous methods, where such local changes have been implemented by generating new (global) images, we propose to formulate local attribute transfers as an inpainting problem. Removing and regenerating only parts of images, our Attribute Transfer Inpainting Generative Adversarial Network (ATI-GAN) is able to utilize local context information to focus on the attributes while keeping the background unmodified resulting in visually sound results.
Recent studies have shown remarkable success in image-to-image translation for attribute transfer applications. However, most of existing approaches are based on deep learning and require an abundant amount of labeled data to produce good results, therefore limiting their applicability. In the same vein, recent advances in meta-learning have led to successful implementations with limited available data, allowing so-called few-shot learning.
In this paper, we address this limitation of supervised methods, by proposing a novel approach based on GANs. These are trained in a meta-training manner, which allows them to perform image-to-image translations using just a few labeled samples from a new target class. This work empirically demonstrates the potential of training a GAN for few shot image-to-image translation on hair color attribute synthesis tasks, opening the door to further research on generative transfer learning.
Recent deep learning based approaches have shown remarkable success on object segmentation tasks. However, there is still room for further improvement. Inspired by generative adversarial networks, we present a generic end-to-end adversarial approach, which can be combined with a wide range of existing semantic segmentation networks to improve their segmentation performance. The key element of our method is to replace the commonly used binary adversarial loss with a high resolution pixel-wise loss. In addition, we train our generator employing stochastic weight averaging fashion, which further enhances the predicted output label maps leading to state-of-the-art results. We show, that this combination of pixel-wise adversarial training and weight averaging leads to significant and consistent gains in segmentation performance, compared to the baseline models.
In this preliminary report, we present a simple but very effective technique to stabilize the training of CNN based GANs. Motivated by recently published methods using frequency decomposition of convolutions (e.g. Octave Convolutions), we propose a novel convolution scheme to stabilize the training and reduce the likelihood of a mode collapse. The basic idea of our approach is to split convolutional filters into additive high and low frequency parts, while shifting weight updates from low to high during the training. Intuitively, this method forces GANs to learn low frequency coarse image structures before descending into fine (high frequency) details. Our approach is orthogonal and complementary to existing stabilization methods and can simply plugged into any CNN based GAN architecture. First experiments on the CelebA dataset show the effectiveness of the proposed method.
Die Katheterablation mit Hochfrequenzstrom (HF) ist der Goldstandard für die Therapie vieler kardi-aler Tachyarrhythmien. Bei der HF-Ablation entstehen Temperaturen zwischen 50 °C und 70 °C, wo-durch bestimmte Strukturen im Herzgewebe gezielt zerstört werden können. Ziel der Studie ist, die HF-Ablation und deren Wärmeausbreitung in Bezug auf die zugeführte Leistung mit unterschiedli-chem Elektrodenmaterial und Elektrodengröße bei supraventrikülären Tachykardien zu simulieren.
Background: The application of high-frequency ablation is used for the treatment of tachycardia arrhythmias and is a respected method. Ablation with high frequency current leads to the targeted heat destruction of myocardial tissue at specific sites and thus prevents the pathological propagation of excitation through these structures.
Purpose: The aim of this study was to simulate heat propagation during RF ablation with modeled electrodes in different sizes and materials. The simulation was performed on atrioventricular node re-entry tachycardia (AVNRT), atrioventricular re-entry tachycardia (AVRT) and atrial flutter (AFL).
Methods: Using the modeling and simulation software CST, ablation catheters with 4 mm and 8 mm tip electrodes were modeled from gold and platinum for each. The designed catheters correspond to the manufacturer"s specifications of Medtronic, Biotronik and Osypka. The catheters were integrated into the Offenburg heart rhythm model to simulate and compare the heat propagation during an ablation application, which also takes into account the blood flow in the four heart chambers. A power of 5 W - 40 W was simulated for the 4 mm electrodes and a power of 50 W - 80 W for the 8 mm electrodes.
Results: During the simulated HF ablation application, the temperature at the ablation electrode was measured at different powers. This is 40.67°C at 5 W, 44.34°C at 10 W, 51.76°C at 20 W, 59.0°C at 30 W, and 66.33°C at 40 W. The measured temperature during 40 W application is 39.5°C at 0,5 mm depth in the myocardium and 37.5°C at 2 mm depth.
In the simulation, the 8 mm platinum electrode reached an ablation temperature of 72.85°C at its tip during an applied power of 60 W. In contrast, the 8 mm platinum electrode reached a depth of 5 mm at 39.5 C° and at a depth of 2 mm at 37.5 °C. In contrast, the 8 mm gold electrode reached a temperature of 64.66°C with the same performance. This is due to the thermal properties of gold, which has a better thermal conductivity than platinum.
Conclusions: CST offers the possibility to carry out a static and dynamic simulation of a heart model and the ablation electrodes integrated in it during an HF ablation. In variation with different electrode sizes and materials, therapy methods for the treatment of AVNRT, AVRT and AFL can be optimized
Das Ziel dieser Arbeit ist es eine Reihe an Informationen und Erfahrungen zur Verfügung zu stellen, um es der Hochschule Offenburg zu ermöglichen, den Zumi-Roboter für pädagogische Zwecke, speziell für den neu angebotenen Studiengang „Angewandte Künstliche Intelligenz“, einzusetzen. Sie umfasst die Analyse der verbauten Komponenten, Aufschluss über die Bedienoberflächen, die Handhabung des Roboters und Erfahrungsberichte über das Programmieren mit Zumi. Ebenfalls wurden zwei Vorführprogramme konzipiert, welche an Infotagen zur Promotion der Hochschule eingesetzt werden können. Den größten Teil der Arbeit umschließt eine voll ausgearbeitete Laboraufgabe, welche in kommenden Semestern für den bereits angesprochenen Studiengang zum Einsatz kommen und gegen Ende der Arbeit im Detail erläutert wird.
Es wurden verschiedenste Versuche durchgeführt, um die Komponenten zu analysieren und um deren Genauigkeit, Funktionsweise und Verlässlichkeit bewerten zu können.
Narrowband IoT (NB-IoT) as a radio access technology for the cellular Internet of Things (cIoT) is getting more traction due to attractive system parameters, new proposals in the 3 rd Generation Partnership Project (3GPP) Release 14 for reduced power consumption and ongoing world-wide deployment. As per 3GPP, the low-power and wide-area use cases in 5G specification will be addressed by the early NB-IoT and Long-Term Evolution for Machines (LTE-M) based technologies. Since these cIoT networks will operate in a spatially distributed environment, there are various challenges to be addressed for tests and measurements of these networks. To meet these requirements, unified emulated and field testbeds for NB-IoT-networks were developed and used for extensive performance measurements. This paper analyses the results of these measurements with regard to RF coverage, signal quality, latency, and protocol consistency.
Diese Arbeit umfasst erste Tests und die Inbetriebnahme eines neuen Prüfplatzes bei der QMK-GmbH. Der Prüfplatz selbst soll in der Lage sein, Leistungsshuntwiderstände kalibrieren zu können. Leistungsshuntwiderstände sind meist eher groß und schwer, damit durch viel Material die Wärmeentwicklung kompensiert werden kann. Zudem sind die Kontaktflächen dementsprechend groß, damit der Übergangswiderstand an den Kontaktflächen möglichst gering ist. Der Widerstandswert selbst ist sehr klein. Standardmäßig liegen Widerstände hier im Bereich von 10 bis 100 Ω. Um so kleine Widerstände möglichst genau messen zu können, muss technisch viel Aufwand betrieben werden. In der Regel wird dies mit einer Vierleitermessung realisiert. Leistungsshuntwiderstände werden aber generell mit einem eher hohen Strom im Bereich von 100 bis 10 000 . Mit dem neuen Prüfplatz soll dies auch umgesetzt werden. Die Widerstände sollen mithilfe von hohen Strömen bis 2 kA kalibriert werden, damit der, für den Prüfling, zutreffende Arbeitsbereich unter Berücksichtigung seiner Eigenerwärmung abgebildet werden kann. Für diese Anwendung wurde ein Prüfplatz entwickelt, der 2 kA zur Verfügung stellen kann und mithilfe eines genauen und kalibrierten Referenzwiderstandes den Widerstand des Kalibriergegenstandes ermitteln kann. Würde man den Aufbau messtechnisch beschreiben, so wird durch eine Konstantstromquelle ein Gleichstrom erzeugt, der beide in Reihe geschalteten Widerstände durchströmt. Damit ist der Strom an beiden Widerständen identisch und kann ermittelt werden. An den Widerständen wird gleichzeitig dessen Spannungsabfall gemessen. Mit dem ermittelten Strom kann anschließend über das Ohmsche Gesetz der „unbekannte“ Widerstandswert des Kalibriergegenstandes ermittelt werden. Dieser wird mit dem Sollwert seines Datenblattes verglichen und in einem Protokoll unter Berücksichtigung der eigenen Messunsicherheit bewertet. Die Messergebnisse werden nach der Messung bzw. Kalibrierung in einem Zertifikat zusammen gefasst, und dem Kunden ausgestellt.
Ziel der Arbeit ist es, eine Kalibriereinrichtung zu entwickeln und zu bewerten, die den Richtlinien und Grundlangen der DAkkS entspricht oder zumindest als Grundlage für eine Akkreditierung bei der DAkkS dient. In erster Linie, soll es mit der Kalibriereinrichtung möglich sein, ISO-Kalibrierungen nach der 9001 Norm durchzuführen und zu bewerten.
Printed electronics (PE) is a fast growing technology with promising applications in wearables, smart sensors and smart cards since it provides mechanical flexibility, low-cost, on-demand and customizable fabrication. To secure the operation of these applications, True Random Number Generators (TRNGs) are required to generate unpredictable bits for cryptographic functions and padding. However, since the additive fabrication process of PE circuits results in high intrinsic variation due to the random dispersion of the printed inks on the substrate, constructing a printed TRNG is challenging. In this paper, we exploit the additive customizable fabrication feature of inkjet printing to design a TRNG based on electrolyte-gated field effect transistors (EGFETs). The proposed memory-based TRNG circuit can operate at low voltages (≤ 1 V ), it is hence suitable for low-power applications. We also propose a flow which tunes the printed resistors of the TRNG circuit to mitigate the overall process variation of the TRNG so that the generated bits are mostly based on the random noise in the circuit, providing a true random behaviour. The results show that the overall process variation of the TRNGs is mitigated by 110 times, and the simulated TRNGs pass the National Institute of Standards and Technology Statistical Test Suite.
Printed electronics (PE) circuits have several advantages over silicon counterparts for the applications where mechanical flexibility, extremely low-cost, large area, and custom fabrication are required. The custom (personalized) fabrication is a key feature of this technology, enabling customization per application, even in small quantities due to low-cost printing compared with lithography. However, the personalized and on-demand fabrication, the non-standard circuit design, and the limited number of printing layers with larger geometries compared with traditional silicon chip manufacturing open doors for new and unique reverse engineering (RE) schemes for this technology. In this paper, we present a robust RE methodology based on supervised machine learning, starting from image acquisition all the way to netlist extraction. The results show that the proposed RE methodology can reverse engineer the PE circuits with very limited manual effort and is robust against non-standard circuit design, customized layouts, and high variations resulting from the inherent properties of PE manufacturing processes.
Printed electronics (PE) is a fast-growing field with promising applications in wearables, smart sensors, and smart cards, since it provides mechanical flexibility, and low-cost, on-demand, and customizable fabrication. To secure the operation of these applications, true random number generators (TRNGs) are required to generate unpredictable bits for cryptographic functions and padding. However, since the additive fabrication process of the PE circuits results in high intrinsic variations due to the random dispersion of the printed inks on the substrate, constructing a printed TRNG is challenging. In this article, we exploit the additive customizable fabrication feature of inkjet printing to design a TRNG based on electrolyte-gated field-effect transistors (EGFETs). We also propose a printed resistor tuning flow for the TRNG circuit to mitigate the overall process variation of the TRNG so that the generated bits are mostly based on the random noise in the circuit, providing a true random behavior. The simulation results show that the overall process variation of the TRNGs is mitigated by 110 times, and the generated bitstream of the tuned TRNGs passes the National Institute of Standards and Technology - Statistical Test Suite. For the proof of concept, the proposed TRNG circuit was fabricated and tuned. The characterization results of the tuned TRNGs prove that the TRNGs generate random bitstreams at the supply voltage of down to 0.5 V. Hence, the proposed TRNG design is suitable to secure low-power applications in this domain.
Printed electronics (PE) enables disruptive applications in wearables, smart sensors, and healthcare since it provides mechanical flexibility, low cost, and on-demand fabrication. The progress in PE raises trust issues in the supply chain and vulnerability to reverse engineering (RE) attacks. Recently, RE attacks on PE circuits have been successfully performed, pointing out the need for countermeasures against RE, such as camouflaging. In this article, we propose a printed camouflaged logic cell that can be inserted into PE circuits to thwart RE. The proposed cell is based on three components achieved by changing the fabrication process that exploits the additive manufacturing feature of PE. These components are optically look-alike, while their electrical behaviors are different, functioning as a transistor, short, and open. The properties of the proposed cell and standard PE cells are compared in terms of voltage swing, delay, power consumption, and area. Moreover, the proposed camouflaged cell is fabricated and characterized to prove its functionality. Furthermore, numerous camouflaged components are fabricated, and their (in)distinguishability is assessed to validate their optical similarities based on the recent RE attacks on PE. The results show that the proposed cell is a promising candidate to be utilized in camouflaging PE circuits with negligible overhead.