Refine
Year of publication
- 2012 (122) (remove)
Document Type
- Conference Proceeding (25)
- Article (unreviewed) (21)
- Other (19)
- Article (reviewed) (18)
- Part of a Book (17)
- Contribution to a Periodical (12)
- Book (9)
- Report (1)
Has Fulltext
- no (122) (remove)
Keywords
- Adsorption (5)
- Metallorganisches Netzwerk (4)
- Dünnschichtchromatographie (2)
- Finite-Elemente-Methode (2)
- Kohlendioxid (2)
- Signaltechnik (2)
- Ammoniumverbindungen (1)
- Batterie (1)
- Bauteil (1)
- Belastung (1)
Institute
Multi-phase management is crucial for performance and durability of electrochemical cells such as batteries and fuel cells. In this paper we present a generic framework for describing the two-dimensional spatiotemporal evolution of gaseous, liquid and solid phases, as well as their interdependence with interfacial (electro-)chemistry and microstructure in a continuum description. The modeling domain consists of up to seven layers (current collectors, channels, electrodes, separator/membrane), each of which can consist of an arbitrary number of bulk phases (gas, liquid, solid) and connecting interfaces (two-phase or multi-phase boundaries). Bulk and interfacial chemistry is described using global or elementary kinetic reactions. Multi-phase management is coupled to chemistry and to mass and charge transport within bulk phases. The functionality and flexibility of this framework is demonstrated using four application areas in the context of post-lithium-ion batteries and fuel cells, that is, lithium-sulfur (Li-S) cells, lithium-oxygen (Li-O) cells, solid oxide fuel cells (SOFC) and polymer electrolyte membrane fuel cells (PEFC). The results are compared to models available in literature and properties of the generic framework are discussed.
In this paper, the multiaxial formulation of a mechanism-based model for fatigue life prediction is presented whichcan be applied to low-cycle fatigue (LCF) and thermomechanical fatigue (TMF) problems in which high-cycle fa-tigue loadings are superimposed. The model assumes that crack growth is the lifetime limiting mechanism and thatthe crack advance in a loading cycleda/dNcorrelates with the cyclic crack-tip opening displacement ΔCTOD.The multiaxial formulation makes use of fracture mechanics solutions and thus, does not need additional modelparameters quantifying the effect of the multiaxiality. Furthermore, the model includes contributions of HCF on ΔCTODand assesses the effect of the direction of the HCF loadings with respect to LCF or TMF loadings inthe life prediction. The model is implemented into the finite-element program ABAQUS. It is applied to predictthe fatigue life of a thermomechanically loaded notched specimen that should represent the situation between theinlet and outlet bore holes of cylinder heads. A good correlation of the predicted and the measured fatigue lives isobtained.
The newly synthesized Zn4O-based MOF 3∞[Zn4(μ4-O){(Metrz-pba)2mPh}3]·8 DMF (1·8 DMF) of rare tungsten carbide (acs) topology exhibits a porosity of 43% and remarkably high thermal stability up to 430 °C. Single crystal X-ray structure analyses could be performed using as-synthesized as well as desolvated crystals. Besides the solvothermal synthesis of single crystals a scalable synthesis of microcrystalline material of the MOF is reported. Combined TG-MS and solid state NMR measurements reveal the presence of mobile DMF molecules in the pore system of the framework. Adsorption measurements confirm that the pore structure is fully accessible for nitrogen molecules at 77 K. The adsorptive pore volume of 0.41 cm3 g−1 correlates well with the pore volume of 0.43 cm3 g−1 estimated from the single crystal structure.
An isomorphous series of 10 microporous copper-based metal–organic frameworks (MOFs) with the general formulas ∞3[{Cu3(μ3-OH)(X)}4{Cu2(H2O)2}3(H-R-trz-ia)12] (R = H, CH3, Ph; X2– = SO42–, SeO42–, 2 NO32– (1–8)) and ∞3[{Cu3(μ3-OH)(X)}8{Cu2(H2O)2}6(H-3py-trz-ia)24Cu6]X3 (R = 3py; X2– = SO42–, SeO42– (9, 10)) is presented together with the closely related compounds ∞3[Cu6(μ4-O)(μ3-OH)2(H-Metrz-ia)4][Cu(H2O)6](NO3)2·10H2O (11) and ∞3[Cu2(H-3py-trz-ia)2(H2O)3] (12Cu), which are obtained under similar reaction conditions. The porosity of the series of cubic MOFs with twf-d topology reaches up to 66%. While the diameters of the spherical pores remain unaffected, adsorption measurements show that the pore volume can be fine-tuned by the substituents of the triazolyl isophthalate ligand and choice of the respective copper salt, that is, copper sulfate, selenate, or nitrate.
Angedockt und eingeloggt
(2012)
The applicability of finite elements for molecular dynamic simulations depends on both the structure’s dimensions and the underlying force field type. Shell and continuum elements describe molecular structures only in an average sense, which is why they are not subject of this paper. In contrast, truss and beam elements are potentially attractive candidates when it comes to accurately reproducing the atomic interactions. However, special considerations are required for force fields that use not only two-body, but also multi-body potentials. For the example of bending and torsion energies it is shown how standard beam element models have to be extended to be equivalent to classical molecular dynamic simulations.
As a basis for the evaluation of hydrogen storage by physisorption, adsorption isotherms of H2 were experimentally determined for several porous materials at 77 K and 298 K at pressures up to 15 MPa. Activated carbons and MOFs were studied as the most promising materials for this purpose. A noble focus was given on how to determine whether a material is feasible for hydrogen storage or not, dealing with an assessment method and the pitfalls and problems of determining the viability. For a quantitative evaluation of the feasibility of sorptive hydrogen storage in a general analysis, it is suggested to compare the stored amount in a theoretical tank filled with adsorbents to the amount of hydrogen stored in the same tank without adsorbents. According to our results, an “ideal” sorbent for hydrogen storage at 77 K is calculated to exhibit a specific surface area of >2580 m2 g−1 and a micropore volume of >1.58 cm3 g−1.
Buildings that are cooled and, if applicable, heated by thermo-active building systems (TABS) in combination with environmental energy have been established in the market during the last years. Many successful and efficient examples prove, that these systems can achieve a good thermal room comfort with a high energy efficiency of the plant system using environmental energy (mainly surface-near geothermal energy). However, operating experience and a systematic evaluation of several building projects demonstrate that there is potential improvement in the design, implementation, and operation of TABS systems. The article presents operating experience and a detailed evaluation of the operation performance of several non-residential buildings with thermo-active building systems with respect to thermal comfort and energy efficiency.
BFH "Umsatzsteuer bei ebay"
(2012)
BGH "Computer-Bild"
(2012)
BGH "Postfachanschrift"
(2012)
BGH Insertionsofferte
(2012)
BGH regierung-oberfranken.de
(2012)
Currently, QRS width and bundle branch block morphology are used as electrocardiographic guideline criterias to selectheart failure (HF) patients with interventricular desynchronization in sinus rhythm (SR) for cardiac resynchronisationtherapy (CRT). Nevertheless, up to 30% of these patients do not benefit from implantation of CRT systems. Esophagealleft ventricular electrogram (LVE) enables semi-invasive measurement of interventricular conduction delays (IVCD)even in patients with atrial fibrillation (AF). To routinely apply this method, a programmer based semi-invasiveautomatic quantification of IVCD should to be developed. Our aims were todefine interventricular conduction delaysby analyzing fractionated left ventricular (LV) deflections in the esophageal left ventricular electrogram of HF patientsin SR or AF.
In 66 HF patients (49 male,17 female, age 65 ± 10 years) a 5F TOslim electrode (Osypka AG, Germany) was perorallyapplied. Using BARD EP Lab, cardiac desynchronization was quantified as interval IVCD between onset of QRS insurface ECG and the investigator-determined onset of the left ventricular deflection in LVE. IVCD was compared withthe intervals between QRS onset and the first maximum (IVCDm1) and between QRS onset and the second maximum(IVCDm2) of the LV complex.
QRS of 173 ± 26 ms was linked with empirical IVCD of 75 ± 25 ms, at mean. First and second LV maximum could beascertained beyond doubt in all patients. Significant correlations of the p<0,01 level were found between IVCD and theIVCDm1 of 96 ± 28 ms as well as between IVCD and the IVCDm2 of 147 ± 31 ms, at mean. To standardize automatic measurement of interventricular conduction delays with respect to patients with fractionatedLV complexes, the first maximum of the LV deflection should be utilized to qualify the IVCD of HF patients with sinusrhythm and atrial fibrillation.
There is an increasing demand by an ever-growing number of mobile customers for transfer of rich media content. This requires very high bandwidth which either cannot be provided by the current cellular systems or puts pressure on the wireless networks, affecting customer service quality. This study introduces COARSE – a novel cluster-based quality-oriented adaptive radio resource allocation scheme, which dynamically and adaptively manages the radio resources in a cluster-based two-hop multi-cellular network, having a frequency reuse of one. COARSE is a cross-layer approach across physical layer, link layer and the application layer. COARSE gathers data delivery-related information from both physical and link layers and uses it to adjust bandwidth resources among the video streaming end-users. Extensive analysis and simulations show that COARSE enables a controlled trade-off between the physical layer data rate per user and the number of users communicating using a given resource. Significantly, COARSE provides 25–75% improvement in the computed user-perceived video quality compared with that obtained from an equivalent single-hop network.
Das Gesetz gegen Abofallen
(2012)
Power systems are increasingly built from distributed generation units and smart consumers that are able to react to grid conditions. Managing this large number of decentralized electricity sources and flexible loads represent a very huge optimization problem. Both from the regulatory and the computational perspective, no one central coordinator can optimize this overall system. Decentralized control mechanisms can, however, distribute the optimization task through price signals or market-based mechanisms. This chapter presents the concepts that enable a decentralized control of demand and supply while enhancing overall efficiency of the electricity system. It highlights both technological and business challenges that result from the realization of these concepts, and presents the state-of-the-art in the respective domains.
The research project Ko-TAG [2], as part of the research initiative Ko-FAS [1], funded by the German Ministry of Economics and Technologies (BMWi), deals with the development of a wireless cooperative sensor system that shall pro-vide a benefit to current driver assistance systems (DAS) and traffic safety applications (TSA). The system’s primary function is the localization of vulnerable road users (VRU) e.g. pedestrians and powered two-wheelers, using communication signals, but can also serve as pre-crash (surround) safety system among vehicles. The main difference of this project, compared to previous ones that dealt with this topic, e.g. the AMULETT project, is an underlying FPGA based Hardware-Software co-design. The platform drives a real-time capable communication protocol that enables highly scalable network topologies fulfilling the hard real-time requirements of the single localization processes. Additionally it allows the exchange of further data (e.g. sensor data) to support the accident pre-diction process and the channel arbitration, and thus supports true cooperative sensing. This paper gives an overview of the project’s current system design as well as of the implementations of the key HDL entities supporting the software parts of the communication protocol. Furthermore, an approach for the dynamic reconfiguration of the devices is described, which provides several topology setups using a single PCB design.
Die Weltwirtschaftskrise 2008 hat mit ihrer zeitweisen Verknappung von Acetonitril eindringlich gezeigt, dass man nicht nur auf eine einzige chromatographische Methode setzten sollte. Genau dies wird aber im Augenblick getan, denn Industrie und Forschung setzen mehrheitlich auf die High Performance Liquid Chromatography (HPLC) als die Trennmethode ihrer Wahl. Für viele Anwendungen in der Pharmazie, in der Umweltanalytik, der Lebensmittelanalytik, aber auch in der Inprozesskontrolle gibt es mit der Dünnschichtchromatografie eine Alternative.
Unter dem europäischen Programm Intelligent Energy for Europe (IEE) fanden sich acht europäische Partner zusammen, um im Rahmen des Projektes ThermCo Lüftungs‐ und Kühlenergiekonzepte für Nichtwohngebäude mit niedrigem Energieeinsatz im Hinblick auf die Energieeffizienz und den thermischen Raumkomfort zu bewerten. Die Analyse erfolgte auf Basis von detaillierten Langzeitmessungen über ein Betriebsjahr in acht Demonstrationsgebäuden in unterschiedlichen klimatischen Zonen Europas und einer standardisierten Datenauswertung. Im Quervergleich aller acht Gebäude werden die Kühlkonzepte gleichermaßen nach dem thermischen Kühlenergiebezug, dem thermischen Raumkomfort und dem Primärenergieeinsatz für die technische Gebäudeausrüstung und die Beleuchtung bewertet. Ein Energiekonzept ist erst dann zufriedenstellend, wenn mit möglichst geringem Energieeinsatz und bei hoher Anlageneffizienz ein guter thermischer Raumkomfort zur Verfügung gestellt werden kann. Mit entsprechenden Gebäudesignaturen werden diese Parameter in einen Zusammenhang gebracht und die Zielstellung überprüft. Detaillierte Komfortuntersuchungen nach der europäischen Komfortnorm DIN EN 15251:2007‐08 geben Hinweise auf die Wirksamkeit der eingesetzten Kühltechnologien in den jeweiligen Klimazonen. Daraus lassen sich Handlungsempfehlungen ableiten.
EuGH "Football Dataco"
(2012)
EuGH "Meister"
(2012)
Experiences with a telecare platform integration of ZigBee sensors into a middleware platform
(2012)
Flores Nocturnas
(2012)
Capture threshold (CT) for transesophageal left atrial (LA) pacing (TLAP) and transesophageal left ventricular (LV) pacing (TLVP) with conventional cylindrical electrodes (CE) are higher than TLAP feeling threshold (FT). Purpose of the study was to evaluate focused TLAP CT and FT for supraventricular tachycardia (SVT) initiation and focused TLVP CT for cardiac resynchronisation therapy (CRT) simulation.
Methods: SVT initiation in patients (P) with palpitations (n=49, age 47 ± 17 years) was analysed during spontaneous rhythm and during focused bipolar TLAP with atrial constant current stimulus output, distal CE and three or seven 6 mm hemispherical electrodes (HE) (TO, Osypka AG, Rheinfelden, Germany). CRT simulation in heart failure P (n=75, age 62 ± 11 years) was evaluated by focused bipolar TLAP and/or TLVP with ventricular constant voltage stimulus output and different pacing mode.
Results: Focused electrical pacing field between CE and HE (n=28) allowed low threshold TLAP with 8.0 ± 2.6 mA CT at 9.9 ms stimulus duration (SD) which was lower than 9.2 ± 4.5 mA FT at 9.9 ms SD. Focused electrical pacing field between HE and HE (n=21) allowed low threshold TLAP with 8.1 ± 2.2 mA CT at 9.9 ms SD which was lower than 9.8 ± 5.0 mA FT at 9.9 ms SD. SVT initiation by programmed AAI TLAP was possible in 23 P and not possible in 26 P. CRT simulation was evaluated with TLAP and TLVP with VAT, D00 and V00 pacing mode and 95.5 ± 10.9 V TLVP CT at 4.0 ms SD.
Conclusions: Programmed focused AAI TLAP allowed initiation of SVT with very low CT and high FT and focused electrical pacing field between CE-HE and HE-HE.CRT simulation with focused TLAP and/or TLVP with VAT, D00 and V00 pacing mode may be a useful technique to detect responders to CRT.
Ziel und Tempo der Energiewende sind gesetzt. Der Ausstieg aus der Stromproduktion in Kernkraftwerken soll bis 2022 geschafft sein. Eine Elektrizitätserzeugung, die auf erneuerbaren Energien beruht, soll die bisherige Erzeugung auf der Grundlage von Kohle, Kernbrennstoffen und Erdgas bis 2050 stufenweise weitgehend ablösen und damit maßgeblich zu den Klimaschutzzielen der Bundesregierung beitragen. Der Weg zu diesen Zielen ist für die Beteiligten hingegen noch nicht deutlich einsehbar. Viele offene Fragestellungen technischer, ökonomischer, legislativer und gesellschaftlicher Natur verstellen den Blick auf eine klare Strategie zur Erreichung der energiepolitischen Ziele. Vielschichtige Aufgaben und immense Herausforderungen kommen mit der Mammutaufgabe „Energiewende“ auf Politik, Wirtschaft, Wissenschaft und Bevölkerung zu. Ein wichtiger Enabler für die erfolgreiche Integration von Wind- und Sonnenenergie sowie für neue Prozesse, Marktrollen und Technologien ist die Informations- und Kommunikationstechnologie (IKT). An diesem Punkt setzt die hier vorliegende Studie an.