Refine
Year of publication
Document Type
Language
- English (23) (remove)
Keywords
- E-Learning (3)
- Algorithmus (2)
- Optik (2)
- Photonik (2)
- mobile learning (2)
- App <Programm> (1)
- Communication Systems (1)
- Computersysteme (1)
- Datenerfassung (1)
- Datenmanagement (1)
Smartphones Welcome! Preparatory Course in Mathematics using the Mobile App MassMatics. Case Study
(2015)
Enthält die Artikel:
"Smoothie:a solution for device and content independent applications including 3D imaging as content" von Razia Sultana und Andreas Christ, S. 13-18
"Future of Logging in the Crisis of Cloud Security", von Sai Manoj Marepalli, Razia Sultana und Andreas Christ, S. 60-64
We propose secure multi-party computation techniques for the distributed computation of the average using a privacy-preserving extension of gossip algorithms. While recently there has been mainly research on the side of gossip algorithms (GA) for data aggregation itself, to the best of our knowledge, the aforementioned research line does not take into consideration the privacy of the entities involved. More concretely, it is our objective to not reveal a node's private input value to any other node in the network, while still computing the average in a fully-decentralized fashion. Not revealing in our setting means that an attacker gains only minor advantage when guessing a node's private input value. We precisely quantify an attacker's advantage when guessing - as a mean for the level of data privacy leakage of a node's contribution. Our results show that by perturbing the input values of each participating node with pseudo-random noise with appropriate statistical properties (i) only a minor and configurable leakage of private information is revealed, by at the same time (ii) providing a good average approximation at each node. Our approach can be applied to a decentralized prosumer market, in which participants act as energy consumers or producers or both, referred to as prosumers.
The developed solution enables the presentation of animations and 3D virtual reality (VR) on mobile devices and is well suited for mobile learning, thus creating new possibilities in the area of e-learning worldwide. Difficult relations in physics as well as intricate experiments in optics can be visualised on mobile devices without need for a personal computer.
The iSign project started in 2000 as a web-based laboratory setting for students of electrical engineering. In the meantime it has broadened into a heterogeneous learning environment offering learning material, adaptive user settings and access to a simulation tool. All these offerings can be accessed via web and wireless by different clients, such as PCs, PDAs and mobile phones. User adaptive systems offer unique and personalised environment for every learner and therefore are a very important aspect of modern e-learning systems. The iSign project aims to personalise the content structure based on the learner's behaviour, content pattern, policies, and system environment. The second aspect of the recent research and development within this project is the generation of suitable content and presentation for different clients. This generation is based additionally on the user preferences in order to obtain the desirable presentation for a given device. New, valuable features are added to the mobile application, empowering the user not only to control the simulation process with his mobile device but also to input data, view the simulation's output and evaluate the results. Experiences with students have helped to improve functionality and look-and-feel whilst using the iSign system. Our goal is to provide unconstrained, continuous and personalised access to the laboratory settings and learning material everywhere and at anytime with different devices.
The idea of this game is to use a flashcard system to create a short story in a foreign language. The story is developed by a group of participants by exchanging sentences via a flashcard system. This way the participants can learn from each other by knowledge sharing without fear of making mistakes because the group members are anonymous. Moreover they do not need a constant support from a teacher.
The developed solution enables the presentation of animations and 3D virtual reality (VR) on mobile devices and is well suited for mobile learning, thus creating new possibilities in the area of e-learning worldwide. Difficult relations in physics as well as intricate experiments in optics can be visualised on mobile devices without need for a personal computer.
Recent developments in information and communication technology, along with advanced displaying techniques and high computational performance open up new visualisation methods to both scientists and lecturers. Thus simulations of complex processes [1] can be computed and visualised in image sequences. The particular idea in our approach is the outsourcing of computationally intensive calculations to servers which then send the results back to mobile users. In order to improve interpretations of the visualised results, users can view them in a 3D-perspective or stereoscopically, given the technical requirements. Today’s technology even permits to view these visualisations on a mobile phone. An example for such a computationally intensive calculation originating from the theory of relativity is depicted in Figure 4.1-1.