Refine
Year of publication
- 2014 (75) (remove)
Document Type
- Conference Proceeding (27)
- Article (reviewed) (23)
- Article (unreviewed) (15)
- Book (4)
- Part of a Book (3)
- Bachelor Thesis (2)
- Contribution to a Periodical (1)
Language
- English (75) (remove)
Keywords
- Intelligentes Stromnetz (5)
- Lithiumbatterie (4)
- Produktion (4)
- Elektrolyt (3)
- Netzwerk (3)
- Photonik (3)
- Positronen-Emissions-Tomografie (3)
- SPECT (3)
- Algorithmus (2)
- Ausbildung (2)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (45)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (17)
- INES - Institut für Energiesystemtechnik (11)
- Fakultät Medien und Informationswesen (M+I) (9)
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (8)
- IUAS - Institute for Unmanned Aerial Systems (2)
PET and SPECT of Neurobiological Systems combines the expertise of renowned authors whose dedication to the development of novel probes and techniques for the investigation of neurobiological systems has achieved international recognition. Various aspects of neurotransmission in the brain are discussed, such as visualization and quantification of (more than 20 different) neuroreceptors, neuroinflammatory markers, transporters, and enzymes as well as neurotransmitter synthesis, β-amyloid deposition, cerebral blood flow, and the metabolic rate of glucose. The latest results in probe development are also detailed.
Most chapters are written jointly by radiochemists and nuclear medicine specialists to ensure a multidisciplinary approach. This state of the art compendium will be valuable to anyone in the field of clinical or preclinical neuroscience, from the radiochemist and radiologist/nuclear medicine specialist to the interested neurobiologist and general practitioner. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences. Other volumes focus on PET and SPECT in psychiatry and PET and SPECT in neurology".
PET and SPECT in Psychiatry
(2014)
PET and SPECT in Psychiatry showcases the combined expertise of renowned authors whose dedication to the investigation of psychiatric disease through nuclear medicine technology has achieved international recognition. The classical psychiatric disorders as well as other subjects – such as suicide, sleep, eating disorders, and autism – are discussed and the latest results in functional neuroimaging are detailed. Most chapters are written jointly by a clinical psychiatrist and a nuclear medicine expert to ensure a multidisciplinary approach. This state of the art compendium will be valuable to all who have an interest in the field of neuroscience, from the psychiatrist and the radiologist/nuclear medicine specialist to the interested general practitioner and cognitive psychologist. It is the first volume of a trilogy on PET and SPECT imaging in the neurosciences; other volumes will focus on PET and SPECT in neurology and PET and SPECT of neurobiological systems.
PET and SPECT in Neurology
(2014)
PET and SPECT in Neurology highlights the combined expertise of renowned authors whose dedication to the investigation of neurological disorders through nuclear medicine technology has achieved international recognition. Classical neurodegenerative disorders are discussed as well as cerebrovascular disorders, brain tumors, epilepsy, head trauma, coma, sleeping disorders, and inflammatory and infectious diseases of the CNS. The latest results in nuclear brain imaging are detailed. Most chapters are written jointly by a clinical neurologist and a nuclear medicine specialist to ensure a multidisciplinary approach. This state-of-the-art compendium will be valuable to anybody in the field of neuroscience, from the neurologist and the radiologist/nuclear medicine specialist to the interested general practitioner and geriatrician. It is the second volume of a trilogy on PET and SPECT imaging in the neurosciences, the other volumes covering PET and SPECT in psychiatry and in neurobiological systems.
Integration of BACNET OPC UA-Devices Using a JAVA OPC UA SDK Server with BACNET Open Source Library
(2014)
Several cloud schedulers have been proposed in the literature with different optimization goals such as reducing power consumption, reducing the overall operational costs or decreasing response times. A less common goal is to enhance the system security by applying specific scheduling decisions. The security risk of covert channels is known for quite some time, but is now back in the focus of research because of the multitenant nature of cloud computing and the co-residency of several per-tenant virtual machines on the same physical machine. Especially several cache covert channels have been identified that aim to bypass a cloud infrastructure's sandboxing mechanism. For instance, cache covert channels like the one proposed by Xu et. al. use the idealistic scenario with two alternately running colluding processes in different VMs accessing the cache to transfer bits by measuring cache access time. Therefore, in this paper we present a cascaded cloud scheduler coined C 3 -Sched aiming at mitigating the threat of a leakage of customers data via cache covert channels by preventing processes to access cache lines alternately. At the same time we aim at maintaining the cloud performance and minimizing the global scheduling overhead.
Photonics meet digital art
(2014)
The paper focuses on the work of an interdisciplinary project between photonics and digital art. The result is a poster collection dedicated to the International Year of Light 2015. In addition, an internet platform was created that presents the project. It can be accessed at http://www.magic-of-light.org/iyl2015/index.htm. From the idea to the final realization, milestones with tasks and steps will be presented in the paper. As an interdisciplinary project, students from technological degree programs were involved as well as art program students. The 2015 Anniversaries: Alhazen (1015), De Caus (1615), Fresnel (1815), Maxwell (1865), Einstein (1905), Penzias Wilson, Kao (1965) and their milestone contributions in optics and photonics will be highlighted.
A former remote area power supply was converted to a smart cogeneration subnet with combined heat and power to develop and validate a forecast based energy management at the University of Applied Sciences in Offenburg/Germany. Locally processed weather forecasts and forecasted demand profiles are integrated to allow a precise reaction to changes of fluctuating power sources, changes in scheduled demand profiles and to improve the energy efficiency of the supply. The management of the electrical and thermal storages is influenced by the forecasted energy contributions and the forecasted demand. Further approaches should improve the accuracy of forecasting algorithms and integrate parameter models gained of a detailed monitoring to realize predictive controllers.
Private households constitute a considerable share of Europe's electricity consumption. The current electricity distribution system treats them as effectively passive individual units. In the future, however, users of the electricity grid will be involved more actively in the grid operation and can become part of intelligent networked collaborations. They can then contribute the demand and supply flexibility that they dispose of and, as a result, help to better integrate renewable energy in-feed into the distribution grids.
Web mentoring peer to peer
(2014)
Introduction: Despite lots of developments in the last years, radiofrequency ablation of rhythm diseases is a safe but still complex procedure that requires special experience and expertise of the physicians and biomedical engineers. Thus, there is a need of special trainings to become familiar with the different equipment and to explain several effects that can be observed during clinical routine.
Methods: The Offenburg University of Applied Sciences offers a biomedical engineering study path specialized in the fields of cardiology, electrophysiology and cardiac electronic implants. It`s Peter Osypka Institute for Pacing and Ablation provides teaching following the slogan “Learning by watching, touching and adjusting”. It conducts lots of trainings for students as well as young physicians interested in electrophysiology and radiofrequency ablation.
Results: In-vitro trainings will be provided using the Osypka HAT 200 and HAT300s, Stockert EPshuttle and SmartAblate system as well as the Boston EPT-1000XP and Maestro 3000 and the Radionics RFG-3E cardiac radio frequency ablation generators. All of them require different handling as well as special accessories like catheter connection cables or boxes and back plates. The participants will be trained in the setup of temperature, power and cut-off impedance dependent on different ablation catheters. Furthermore troubleshooting in hard- and software is part of the program. Performing procedures in pork or animal protein and using physiological saline solution to simulate the blood flow, they can study the influence of contact force and impedance on lesion geometry etc. and to avoid adverse effects like “plops”. Lots of catheter types are available: 4mm tip, 8mm standard and gold tip, open and closed irrigated tip ablation catheters of different companies. The experiments will be completed by measuring the lesion size dependent on the used catheter type and ablation settings.
Conclusion: In-vitro training in radiofrequency ablation is a challenge for biomedical engineering students and young physicians.
Cardiac resynchronization therapy is an established therapy for heart failure patients with sinus rhythm, reduced left ventricular ejection fraction and prolongation of QRS duration. The aim of the study was to evaluate ventricular desynchronization with electrical interventricular delay (IVD) to left ventricular delay (LVD) ratio in atrial fibrillation heart failure patients. IVD and LVD were measured by transesophageal posterior left ventricular ECG recording. In atrial fibrillation heart failure patients with prolonged QRS duration, the mean IVD-to-LVD-ratio was 0.84 +/- 0.42 with a range from 0.17 to 2.2 IVD-to-LVD-ratio. IVD-to-LVD-ratio correlated with QRS duration. IVD-to-LVD-ratio may be a useful parameter to evaluate electrical ventricular desynchronization in atrial fibrillation heart failure patients.
Cardiac resynchronization therapy with atrioventricular and interventricular pacing delay optimized biventricular pacing is an established therapy for heart failure patients with sinus rhythm and reduced left ventricular ejection fraction. The aim of the study was to evaluate atrioventricular and interventricular pacing delay optimization in cardiac resynchroniza-tion therapy by transthoracic impedance cardiography in biventricular pacing with different left ventricular electrode po-sition. In biventricular pacing heart failure patients with lateral, posterolateral and anterolateral left ventricular electrode position, the mean optimal atrioventricular sening delay was 108.6 ± 20.3 ms and the mean optimal interventricular pac-ing delay -12.3 ± 25.9 ms. Transthoracic impedance cardiography may be a useful technique to optimize atrioventricular and interventricular pacing delay in biventricular pacing with different left ventricular electrode position.
Since direct current high energy shock fulguration was initially performed in the mid 1980s, ablation of cardiac arrhythmias has come to widespread use. Today the most frequently used energy source for catheter ablation is radio frequency (RF). It was the German engineer Peter Osypka who made available the HAT 100 as the first simple commercial RF ablator.
Nevertheless, in the first years of ablation, physicians were effectively working in the dark. Until today with an increasing understanding of arrhythmia mechanisms, both at the atrial and ventricular levels, this curative technology has made tremendous progress. Now, due to crucial improvement of RF ablation generators, temperature and contact force sensor catheters in combination with non-flouroscopic electroanatomical mapping technologies, computerized temperature and impedance controlled radiofrequency catheter ablation can be used to cure all types of arrhythmias including atrial and ventricular fibrillation. For the latter, cooled ablation by saline solution irrigated catheters has been developed to a widely used standard method. This procedure resulting in pulmonary vein isolation requires transseptal puncture and is technically demanding. Nevertheless, it has shown to be more effective than antiarrhythmic drug therapy.
While earliest RF ablations were performed with non-steerable catheters, today are used steerable sensor catheters without or with external and internal cooling and tips of 4mm or 8mm length. Further innovations like integration of mapping and cardiac imaging give exact information of the number of pulmonary veins and branching patterns and help to correlate electrical signals with anatomical structures.
The magnetic navigation significantly improved the success rates and safety of catheter ablation. Thus, in most cases RF catheter ablation has developed in the treatment of supraventricular arrhythmias from an alternative approach to drug therapy into the first therapeutic choice providing low complication rates.
In future, robotic navigation will further simplify procedures and reduce radiation exposure of this curative approach.
Introduction: Radiofrequency ablation allows successful treatment of most supraventricular reentrant and focal tachycardias and an increasing number of ventricular tachycardias. Different catheter tips are used. While AV nodal reentrant tachycardias require catheters with a tip of 4mm length, an 8 mm tip electrodes will be used for atrial flutter. A pulmonary vein isolation will be performed using 4 mm irrigated tip electrodes to achieve larger and deeper lesions. The need of a tubing set and pump for saline transfusion is a disadvantage of this technique. Gold tip electrodes can alternatively be used to produce increases in lesion size. Aim of this study was to compare RF ablation catheters of exactly the same geometry with either platin-iridum or gold tip.
Methods: Gold provides an almost four-fold thermal conductivity compared with platinum-iridium. The Cerablate G flutter (Osypka AG, Rheinfelden-Herten) is a newly designed radiofrequency ablation catheter with an 8 mm gold tip. Its power delivery was compared with the Cerablate flutter of same geometry but platin-iridium tip. Therefore, in-vitro RF ablations were performed using pork meat in a 0.9% saline solution at 37°C temperature. A pulsed volume flow was generated using a pump to simulate the blood flow. Temperature controlled ablations of 60 seconds using 45, 55 and 65°C and a maximum of 70W RF power were performed.
Results: Using the Osypka HAT300smart ablator, cumulative power of 167, 474 and 672W was delivered with gold tip against 121, 227 and 310 W with platin-iridium tip. By the Stockert SmartAblate G4 ablator, 202, 546 and 1075W was delivered with gold tip against 117, 246 and 394W with platin-iridium using 45, 55 and 65°C temperature.
Conclusion: During in-vitro investigations, the gold tip electrodes allowed a in power delivery increase of 117 up to 173%. Thus, gold tips can be used to increase lesion depth and diameter without cooling equipment.
Non-fluoroscopic Imaging with MRT/CT Image Integration Catheter Positioning with Double Precision
(2014)
Introduction: When antiarrhythmic drug therapy has failed, different approaches of pulmonary vein isolation are considered a reasonable option in the treatment of atrial fibrillation. It will be performed predominantly by radiofrequency catheter ablation. As the individual anatomy of left atrium and the pulmonary veins differs considerably, accurate visualization of these structures is essential during catheter positioning. Using non-fluoroscopic electroanatomic mapping system with image integration, electroanatomic mapping can be combined with highly detailed anatomical MRT or CT information on complex left atrial structures. This may facilitate catheter navigation during ablation for atrial fibrillation.
Methods: The CARTO XP electroanatomic system was used in a project during biomedical engineering study to practice image integration of anonymized real patients that underwent pulmonary vein isolation by CARTO XP and a MRT/CT procedure. Using the image integration software, MRT or CT images were imported into the CARTO XP system. The next process was segmentation of the acquired images. It involves dividing the images into different regions in order to select the structures of interest. In clinical routine, this segmentation has to be performed before catheter ablation. Then, the segmented images were aligned with the reconstructed electroanatomic maps. This consists of several steps, including selection of the left atrium, scaling of the reconstructed geometry, fusion of the structures using landmarks, and optimization of the integration by adjusting the reconstructed geometry of the left atrium.
Results: In the 3 months lasting period of the project, image integration was trained in 13 patients undergoing catheter ablation for atrial fibrillation. Within this period, time consumption for the process decreased from about 90 minutes at the beginning to about 35 minutes at the end for one patient.
Conclusion: Image integration into non-fluoroscopic electroanatomic map is a sophisticated tool in cardiac radiofrequency catheter ablation. Intensive training is necessary to control the procedure.
This work describes a camera-based method for the calibration of optical See-Through Glasses (STGs). A new calibration technique is introduced for calibrating every single display pixel of the STGs in order to overcome the disadvantages of a parametric model. A non-parametric model compared to the parametric one has the advantage that it can also map arbitrary distortions. The new generation of STGs using waveguide-based displays [5] will have higher arbitrary distortions due to the characteristics of their optics. First tests show better accuracies than in previous works. By using cameras which are placed behind the displays of the STGs, no error prone user interaction is necessary. It is shown that a high accuracy tracking device is not necessary for a good calibration. A camera mounted rigidly on the STGs is used to find the relations between the system components. Furthermore, this work elaborates on the necessity of a second subsequent calibration step which adapts the STGs to a specific user. First tests prove the theory that this subsequent step is necessary.
Using patent information for identification of new product features with high market potential
(2014)
We tested the MOF framework Cu-BTC for natural gas (NG) storage. Adsorption isotherms of C1–C4 alkanes were simulated applying the Grand Canonical ensemble and the Monte Carlo algorithm in a classical molecular mechanics approach. Experimental monocomponent isotherm of the alkanes was used to validate the force field. We performed multicomponent adsorptions calculations for three different quaternary mixtures of C1–C4 alkanes, matching typical NG streams composition, and predicted theoretical storage capacities, efficiency and accumulation of the NG within that composition. Despite being one of the frameworks with greatest storage capacity of methane, we found that Cu-BTC presented great sensitivity to the variation of the heavier alkanes in NG composition. When we increase the percentage of butane from 0.1% to 0.7% in the mixture, the mass of components retained in the discharge pressure (1 bar) increases from 35 to 60%. We also perform siting and interaction energy investigations and compare the NG storage performance of the Cu-BTC with that of activated carbons. To our knowledge, this is the first study regarding the efficiency of the NG storage in Cu-BTC.
We present a two dimensional (2D) planar chromatographic separation of estrogenic active compounds on RP-18 (Merck, 1.05559) and silica gel (Merck, 1.05721) phase. A mixture of 13 substances was separated using a solvent mix consisting of methanol–acetonitrile–water (2 + 2 + 1, v/v/v) on RP-18 phase in the first direction and cyclohexane–butylacetate–methanol (8 + 6 + 1, v/v/v) in the second direction on silica gel plate. Both developments were carried out over a distance of 70 mm. We used the grafted method to combine both plates in a 2D-separation. This 2D-separation method can be used to quantify 17α-ethinylestradiol (EE2) in an effect-directed analysis using the yeast strain Saccharomyces cerevisiae BJ3505. The test strain (according to McDonnell) contains the estrogen receptor. Its activation by estrogen active compounds is measured by inducting the reporter gene lacZ that encodes the enzyme ß-galactosidase. This enzyme activity is determined on plate by using the fluorescent substrate MUG (4-methylumbelliferyl ß-D-galactopyranoside).
Hybrid SPECT/US
(2014)
A laser-operated, angle-tunable transducer was employed to excite selectively elastic waves guided along the apex of a solid wedge. The propagation of wedge waves at anisotropic monocrystalline silicon edges with different symmetry properties was studied by optical detection. The reduced symmetry in crystals, as compared to isotropic media, causes a number of new features, such as the existence of supersonic leaky wedge waves, tilted spatial pulse profiles, and other peculiarities of their localization. Experimental and theoretical results are presented for three different types of symmetry configurations: the wedge symmetric about its midplane, the wedge symmetric about the plane normal to its apex line, and the wedge symmetric about one of its faces. The experiments include accurate measurements of the phase velocity and the wave field distribution, providing information on localization and coupling of wedge waves with other waves. Theoretically, the wedge waves were treated by the Laguerre function method, extended to modes that are not localized at the tip of the wedge. This approach allowed an accurate description of the observed localized and leaky wedge waves in anisotropic wedges.