Refine
Year of publication
Document Type
- Conference Proceeding (647) (remove)
Language
- English (486)
- German (159)
- Multiple languages (1)
- Russian (1)
Keywords
- Gamification (9)
- Kommunikation (9)
- Assistive Technology (8)
- Produktion (8)
- Ausbildung (7)
- Design (6)
- Deafblindness (5)
- Eingebettetes System (5)
- Energieversorgung (5)
- Heart rhythm model (5)
Institute
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (246)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (145)
- Fakultät Medien und Informationswesen (M+I) (104)
- Fakultät Betriebswirtschaft und Wirtschaftsingenieurwesen (B+W) (80)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (70)
- ivESK - Institut für verlässliche Embedded Systems und Kommunikationselektronik (64)
- ACI - Affective and Cognitive Institute (32)
- INES - Institut für Energiesystemtechnik (25)
- IMLA - Institute for Machine Learning and Analytics (6)
- Zentrale Einrichtungen (6)
RETIS – Real-Time Sensitive Wireless Communication Solution for Industrial Control Applications
(2020)
Ultra-Reliable Low Latency Communications (URLLC) has been always a vital component of many industrial applications. The paper proposes a new wireless URLLC solution called RETIS, which is suitable for factory automation and fast process control applications, where low latency, low jitter, and high data exchange rates are mandatory. In the paper, we describe the communication protocol as well as the hardware structure of the network nodes for implementing the required functionality. Many techniques enabling fast, reliable wireless transmissions are used – short Transmission Time Interval (TTI), Time-Division Multiple Access (TDMA), MIMO, optional duplicated data transfer, Forward Error Correction (FEC), ACK mechanism. Preliminary tests show that reliable end-to-end latency down to 350 μs and packet exchange rate up to 4 kHz can be reached (using quadruple MIMO and standard IEEE 802.15.4 PHY at 250 kbit/s).
Industrie 4.0 bedeutet nicht nur einen Wandel der technischen Möglichkeiten und Arbeitsbedingungen, sondern auch einen Bedarf an neuen, sich kontinuierlich weiterentwickelnden Kompetenzen und die Bereitschaft der Beschäftigten, Veränderungen mitzugestalten. Spielerische Ansätze der Kompetenzentwicklung können v.a. bei weiterbildungsfernen Mitarbeitern hilfreich sein, um das komplexe Thema verständlich zu vermitteln. Der Beitrag beschreibt ein Seminarkonzept mit integriertem Brettspiel, mit dem Teilnehmer anhand eines fiktiven Unternehmens (Müller GmbH) die Transformation eines Unternehmens in die Industrie 4.0 spielerisch nachvollziehen. Dieses Konzept erweist sich in einer ersten Evaluation als durchaus vielversprechend.
BiCI users’ sensitivity to interaural phase differences for single- and multi-channel stimulation
(2016)
Novel manufacturing technologies, such as printed electronics, may enable future applications for the Internet of Everything like large-area sensor devices, disposable security, and identification tags. Printed physically unclonable functions (PUFs) are promising candidates to be embedded as hardware security keys into lightweight identification devices. We investigate hybrid PUFs based on a printed PUF core. The statistics on the intra- and inter-hamming distance distributions indicate a performance suitable for identification purposes. Our evaluations are based on statistical simulations of the PUF core circuit and the thereof generated challenge-response pairs. The analysis shows that hardware-intrinsic security features can be realized with printed lightweight devices.
Uncontrollable manufacturing variations in electrical hardware circuits can be exploited as Physical Unclonable Functions (PUFs). Herein, we present a Printed Electronics (PE)-based PUF system architecture. Our proposed Differential Circuit PUF (DiffC-PUF) is a hybrid system, combining silicon-based and PE-based electronic circuits. The novel approach of the DiffC-PUF architecture is to provide a specially designed real hardware system architecture, that enables the automatic readout of interchangeable printed DiffC-PUF core circuits. The silicon-based addressing and evaluation circuit supplies and controls the printed PUF core and ensures seamless integration into silicon-based smart systems. Major objectives of our work are interconnected applications for the Internet of Things (IoT).