Open Access
Refine
Year of publication
Document Type
- Conference Proceeding (667)
- Article (reviewed) (355)
- Contribution to a Periodical (269)
- Article (unreviewed) (174)
- Bachelor Thesis (125)
- Patent (123)
- Working Paper (109)
- Report (73)
- Periodical Part (52)
- Master's Thesis (37)
Conference Type
- Konferenzartikel (412)
- Konferenz-Abstract (129)
- Konferenzband (74)
- Sonstiges (33)
- Konferenz-Poster (22)
Language
- German (1054)
- English (1023)
- Other language (5)
- Russian (2)
- French (1)
- Multiple languages (1)
- Spanish (1)
Keywords
- Mikroelektronik (64)
- RoboCup (33)
- COVID-19 (26)
- Biomechanics (24)
- Export (22)
- Künstliche Intelligenz (21)
- E-Learning (18)
- Machine Learning (17)
- Social Media (17)
- Deep learning (16)
Institute
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (505)
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (367)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (349)
- Fakultät Medien und Informationswesen (M+I) (bis 21.04.2021) (320)
- Fakultät Wirtschaft (W) (208)
- INES - Institut für nachhaltige Energiesysteme (147)
- Fakultät Medien (M) (ab 22.04.2021) (95)
- IMLA - Institute for Machine Learning and Analytics (82)
- Veröffentlichungen außerhalb der Hochschulzeit (77)
- Zentrale Einrichtungen (73)
Funding number
- 16DHBKI074 (3)
- WM31-43-99/111 (3)
- 03SBE0001 A-C (2)
- 2021-1-ES01-KA220-HED-000030125 (2)
- 01FP1721 (1)
- 01FP1722 (1)
- 01FP1723 (1)
- 03EI6019A-E (1)
- 03EN1021A-F (1)
- 03WKB06C (1)
Heat pumps play a crucial role in decarbonizing buildings, yet conventional control strategies limit their grid-supportive potential. Model Predictive Control (MPC) offers a promising alternative to optimize energy costs and grid performance, but real-world implementations remain scarce. This study demonstrates the feasibility of MPC in a low-energy, non-residential building by integrating a controller based on electricity market prices. The system, deployed on a Raspberry Pi and integrated into the building automation system, utilizes weather forecasts and a grey-box model for load prediction. A key challenge is the lack of standardized interfaces for heat pump controls, requiring custom solutions. A 7-day performance analysis compares MPC with conventional control, focusing on economic efficiency and grid support. MPC shifts heat pump operation to periods of lower electricity prices, increasing storage temperatures and reducing the average COP from 7.6 to 6.0. Despite this, energy costs decrease by 40%, lowering the electricity procurement price from 0.36 EUR to 0.12 EUR/kWh, while the Grid Support Coefficient improves by 13%. These results confirm that MPC can enhance heat pump operation with simple component models, provided the system allows flexibility and demand is predictable.
Laser-induced fluorescence (LIF) is a non-invasive optical diagnostics technique frequently used in reactive media to measure physical properties such as gas-phase species concentrations and temperature. It provides important information for understanding reaction and transport processes. For deriving detection schemes that provide selective and quantitative information, fluorescence spectra of the species of interest as well as potential interference sources must be simulated. LIFSim 4.0 is a modular software for simulating absorption, LIF excitation, and LIF emission spectra of NO, SiO, OH, and O2 that also can be extended by the user to include other species. Line positions, line broadening, and collisional quenching are calculated based on spectroscopic data from literature. The code provides spectral analysis tools to interrogate and analyze sensitive spectral regions suitable for derivation of temperature from multi-line LIF measurements. The library includes fitting functions optimized for enhancing and accelerating the post-processing of stacked LIF images with varied excitation wavelength for temperature imaging and separation of the target LIF signal from broad-band or scattering background as well as tools for assessing the validity of results in non-ideal measurement situations.
Green IT
(2025)
Dieser Leitfaden bietet eine kompakte Übersicht zu strategischen, organisatorischen und technischen Aspekten, um Green IT nachhaltig an Hochschulen und öffentlichen Einrichtungen zu verankern. Er ist auf die spezifischen Anforderungen dieser Institutionen abgestimmt und versteht sich als praxisbezogene Orientierungshilfe. Die Inhalte und Ergebnisse basieren auf den Erkenntnissen und Arbeiten des Forschungsprojekts "Green Academic IT Potential (GAIT)".