INES - Institut für nachhaltige Energiesysteme (bis 18.11.2021: Institut für Energiesystemtechnik)
Refine
Year of publication
Document Type
- Article (reviewed) (92)
- Conference Proceeding (50)
- Article (unreviewed) (17)
- Report (15)
- Part of a Book (11)
- Contribution to a Periodical (8)
- Book (6)
- Doctoral Thesis (4)
- Patent (4)
- Master's Thesis (3)
Conferencetyp
- Konferenzartikel (41)
- Konferenz-Abstract (8)
- Konferenz-Poster (1)
Keywords
- Lithiumbatterie (10)
- Energieversorgung (8)
- Haustechnik (8)
- Brennstoffzelle (7)
- Batterie (5)
- Fotovoltaik (5)
- lithium-ion battery (5)
- Bauteil (4)
- Elektrochemie (4)
- Intelligentes Stromnetz (4)
Institute
- INES - Institut für nachhaltige Energiesysteme (bis 18.11.2021: Institut für Energiesystemtechnik) (212)
- Fakultät Maschinenbau und Verfahrenstechnik (M+V) (151)
- Fakultät Elektrotechnik und Informationstechnik (E+I) (bis 03/2019) (30)
- Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019) (20)
- Zentrale Einrichtungen (1)
promoted by (select)
Open Access
- Open Access (92)
- Closed Access (67)
- Closed (11)
- Bronze (10)
- Diamond (10)
- Grün (6)
- Gold (4)
Lithium-ion battery cells exhibit a complex and nonlinear coupling of thermal, electrochemical,and mechanical behavior. In order to increase insight into these processes, we report the development of a pseudo-three-dimensional (P3D) thermo-electro-mechanical model of a commercial lithium-ion pouch cell with graphite negative electrode and lithium nickel cobalt aluminum oxide/lithium cobalt oxide blend positive electrode. Nonlinear molar volumes of the active materials as function of lithium stoichiometry are taken from literature and implemented into the open-source software Cantera for convenient coupling to battery simulation codes. The model is parameterized and validated using electrical, thermal and thickness measurements over a wide range of C-rates from 0.05 C to 10 C. The combined experimental and simulated analyses show that thickness change during cycling is dominated by intercalation-induced swelling of graphite, while swelling of the two blend components partially cancel each other. At C-rates above 2 C, electrochemistry-induced temperature increase significantly contributes to cell swelling due to thermal expansion. The thickness changes are nonlinearly distributed over the thickness of the electrode pair due to gradients in the local lithiation, which may accelerate local degradation. Remaining discrepancies between simulation and experiment at high C-rates might be attributed to lithium plating, which is not considered in the model at present.
A balcony photovoltaic (PV) system, also known as a micro-PV system, is a small PV system consisting of one or two solar modules with an output of 100–600 Wp and a corresponding inverter that uses standard plugs to feed the renewable energy into the house grid. In the present study we demonstrate the integration of a commercial lithium-ion battery into a commercial micro-PV system. We firstly show simulations over one year with one second time resolution which we use to assess the influence of battery and PV size on self-consumption, self-sufficiency and the annual cost savings. We then develop and operate experimental setups using two different architectures for integrating the battery into the micro-PV system. In the passive hybrid architecture, the battery is in parallel electrical connection to the PV module. In the active hybrid architecture, an additional DC-DC converter is used. Both architectures include measures to avoid maximum power point tracking of the battery by the module inverter. Resulting PV/battery/inverter systems with 300 Wp PV and 555 Wh battery were tested in continuous operation over three days under real solar irradiance conditions. Both architectures were able to maintain stable operation and demonstrate the shift of PV energy from the day into the night. System efficiencies were observed comparable to a reference system without battery. This study therefore demonstrates the feasibility of both active and passive coupling architectures.
Electrochemical pressure impedance spectroscopy (EPIS) is an emerging tool for the diagnosis of polymer electrolyte membrane fuel cells (PEMFC). It is based on analyzing the frequency response of the cell voltage with respect to an excitation of the gas-phase pressure. Several experimental studies in the past decade have shown the complexity of EPIS signals, and so far there is no agreement on the interpretation of EPIS features. The present study contributes to shed light into the physicochemical origin of EPIS features, by using a combination of pseudo-two-dimensional modeling and analytical interpretation. Using static simulations, the contributions of cathode equilibrium potential, cathode overpotential, and membrane resistance on the quasi-static EPIS response are quantified. Using model reduction, the EPIS responses of individual dynamic processes are predicted and compared to the response of the full model. We show that the EPIS signal of the PEMFC studied here is dominated by the humidifier. The signal is further analyzed by using transfer functions between various internal cell states and the outlet pressure excitation. We show that the EPIS response of the humidifier is caused by an oscillating oxygen molar fraction due to an oscillating mass flow rate.
The nonlinear behavior of inverters is largely impacted by the interlocking and switching times. A method for online identifying the switching times of semiconductors in inverters is presented in the following work. By being able to identify these times, it is possible to compensate for the nonlinear behavior, reduce interlocking time, and use the information for diagnostic purposes. The method is first theoretically derived by examining different inverter switching cases and determining potential identification possibilities. It is then modified to consider the entire module for more robust identification. The methodology, including limitations and boundary conditions, is investigated and a comparison of two methods of measurement acquisition is provided. Subsequently the developed hardware is described and the implementation in an FPGA is carried out. Finally, the results are presented, discussed, and potential challenges are encountered.
The present work describes an extension of current slope estimation for parameter estimation of permanent magnet synchronous machines operated at inverters. The area of operation for current slope estimation in the individual switching states of the inverter is limited due to measurement noise, bandwidth limitation of the current sensors and the commutation processes of the inverter's switching operations. Therefore, a minimum duration of each switching state is necessary, limiting the final area of operation of a robust current slope estimation. This paper presents an extension of existing current slope estimation algorithms resulting in a greater area of operation and a more robust estimation result.
Electrochemical pressure impedance spectroscopy (EPIS) has received the attention of researchers as a method to study mass transport processes in polymer electrolyte mem-brane fuel cells (PEMFC). It is based on analyzing the cell voltage response to a harmonic excitation of the gas phase pressure in the frequency domain. Several experiments with a single-cell fuel cell have shown that the spectra contain information in the frequency range typical for mass transport processes and are sensitive to specific operating condi-tions and structural fuel cell parameters. To further benefit from the observed features, it is essential to identify why they occur, which to date has not yet been accomplished. The aim of the present work, therefore, is to identify causal links between internal processes and the corresponding EPIS features.
To this end, the study follows a model-based approach, which allows the analysis of inter-nal states that are not experimentally accessible. The PEMFC model is a pseudo-2D model, which connects the mass transport along the gas channel with the mass transport through the membrane electrode assembly. A modeling novelty is the consideration of the gas vol-ume inside the humidifier upstream the fuel cell inlet, which proves to be crucial for the reproduction of EPIS. The PEMFC model is parametrized to a 100 cm² single cell of the French project partner, who provided the experimental EPIS results reproduced and in-terpreted in the present study.
The simulated EPIS results show a good agreement with the experiments at current den-sities ≤ 0.4 A cm–2, where they allow a further analysis of the observed features. At the lowest excitation frequency of 1 mHz, the dynamic cell voltage response approaches the static pressure-voltage response. In the simulated frequency range between 1 mHz – 100 Hz, the cell voltage oscillation is found to strongly correlate with the partial pressure oscillation of oxygen, whereas the influence of the water pressure is limited to the low frequency region.
The two prominent EPIS features, namely the strong increase of the cell voltage oscillation and the increase of phase shift with frequency, can be traced back via the oxygen pressure to the oscillation of the inlet flow rate. The phenomenon of the oscillating inlet flow rate is a consequence of the pressure change of the gas phase inside the humidifier and in-creases with frequency. This important finding enables the interpretation of experimen-tally observed EPIS trends for a variation of operational and structural fuel cell parame-ters by tracing them back to the influence of the oscillating inlet flow rate.
The separate simulation of the time-dependent processes of the PEMFC model through model reduction shows their individual influence on EPIS. The sluggish process of the wa-ter uptake by the membrane is visible below 0.1 Hz, while the charge and discharge of the double layer becomes visible above 1 Hz. The gas transport through the gas diffusion layer is only visible above 100 Hz. The simulation of the gas transport through the gas channel
without consideration of the humidifier becomes visible above 1 Hz. With consideration of the humidifier the gas transport through the gas channel is visible throughout the fre-quency range. The strong similarity of the spectra considering the humidifier with the spectra of the full model setup shows the dominant influence of the humidifier on EPIS.
A promising observation is the change in the amplitude relationship between the cell volt-age and the oxygen partial pressure oscillation as a function of the oxygen concentration in the catalyst layer. At a frequency where the influence of oxygen pressure on the cell voltage is dominant, for example at 1 Hz, the amplitude of the cell voltage oscillation could be used to indirectly measure the oxygen concentration in the catalyst layer.
Der verstärkte Einsatz von Wärmepumpen bei der Realisierung einer klimaneutralen Wärmeversorgung führt zu einer signifikanten Zunahme und Änderung der elektrischen Lasten in den Verteilnetzen. Daher gilt es, Wärmepumpen so zu steuern, dass sie Verteilnetze wenig belasten oder sogar unterstützen.
Inhalt des Projekts „PV²WP - PV Vorhersage für die netzdienliche Steuerung von Wärmepumpen“ (Projektlaufzeit 1.07.2018 – 30.06.2021) war die Demonstration eines neuen Ansatzes zur Steuerung von Heizungssystemen, die auf Wärmepumpen und thermischen Speichern basieren und in Kombination mit einer Photovoltaikanlage betrieben werden. Das übergeordnete Ziel war dabei die Verbesserung der Netzintegration und Smart-Grid-Tauglichkeit entsprechender Heizungssysteme durch eine kostengünstige Technologie bei gleichzeitiger Erhöhung der Wirtschaftlichkeit.
Dabei wurden drei zukunftsweisende Technologien in Kombination genutzt und demonstriert: wolkenkamerabasierte Kurzfristprognosen, prädiktive Steuerung und Regelung sowie machinelearning-basierte Systemmodellierung als Basis für die Optimierung. Als Demonstrationsumgebung diente mit dem Projekthaus Ulm ein real bewohntes Einfamilienhaus.Umweltforschung
Für Verkehrsunternehmen stellt die Erprobung neuer Technologien eine große Herausforderung dar.
Sowohl Wasserstoff-Busse als auch Batterie-Busse können ihren Beitrag zur Umstellung des ÖPNV auf emissionsfreie Mobilität leisten. Je nach Anwendungsmuster können sich beide Technologien gut ergänzen und zu einem volkswirtschaftlichen Optimum führen. Es gilt, die Technologien im realen Umfeld zu erproben, um praxisnahe Erfahrung zu sammeln und dabei Mitarbeiter auszubilden, ohne die Qualität des Betriebes zu gefährden. Bei der aktuellen Kostenlage sehen beide Technologien ihre Einführung in den Betrieb mit Mehrkosten im Vergleich zu der aktuellen Diesel-Lösung verbunden.
Bei einer Batterie-basierten Lösung mit Pantograph-Schnellladung sind kürzere Linien gute Kandidaten für eine elektrische Umstellung ohne Auswirkungen auf die Größe der Busflotte. Auch Liniensysteme beliebiger Länge mit Knotenpunkten in regelmäßigen Abständen ermöglichen eine gemeinsame Nutzung der Ladeinfrastruktur und stellen somit reduzierte Aufbaukosten der Ladeinfrastruktur in Aussicht. In diesem Fall sind aber auch Fahrplanmanagement-Aspekte hinsichtlich der Ladezeit am Pantograph mit zu berücksichtigen, die nicht Bestandteil dieser Studie gewesen sind. Allgemein lassen die Kosten-Prognosen für Batterie und Batterie-elektrische Fahrzeuge eine signifikante Kostenreduzierung bis 2030 erkennen, die in manchen Konfigurationen zur Kostenparität und sogar geringeren Kosten als mit der Diesel-Variante führen würde.
Anders als für Batterie-Busse stellt die Linien-Konfiguration keinen wirtschaftlichen Einflussfaktor auf den Betrieb von Wasserstoff-Bussen dar. Die derzeitige Reichweite der H2-Busse reicht aus, um die zu erwartende tägliche Fahrleistung zu decken. Bei der Wasserstoffmobilität sind aber die Versorgungsinfrastruktur und die damit verbundenen Kraftstoffkosten von entscheidender Bedeutung. Ihr Aufbau ist mit hohen Investitionskosten und gesetzlichen Verpflichtungen verbunden (BImSchG, BetrSichV), die für eine erste Erprobung der Technologie im kleinen Maßstab eine Hürde für Verkehrsunternehmen darstellen könnte. Die H2 Mobility Deutschland bietet die Möglichkeit an, 700 bar Tankstellen mit einem 350 bar Modul zu erweitern, das die tägliche Versorgung von ca. 6 Bussen ermöglicht. Mit begrenzten Risiken für die Verkehrsunternehmen bietet es sich daher an, die H2 Mobilität auf eine limitierte Busflotte zu erproben. Da der Aufbau des H2-Mobility Deutschland Tankstellennetzes eine Lücke in Offenburg und Umgebung aufweist, wäre es vorstellbar, an der Errichtung einer solchen Tankstelle zu arbeiten, die die Betankung und Erprobung von Wasserstoff-Bussen ermöglicht. Auf längerer Sicht ist die Sicherstellung einer gut platzierten zuverlässigen und nachhaltigen Wasserstoffquelle von entscheidender Bedeutung. Derzeit liegen vorhandene Wasserstoffquellen in mehr als 100 km Entfernung. Eine Nutzung der Wasserkraft des naheliegenden Rheins erscheint durchaus sinnvoll, sowohl aus wirtschaftlichen als auch aus umwelttechnischen Gründen (erneuerbarer Strom, Stromkostenreduzierung durch Eigenversorgung, kürzere Transportwege, möglicher Nutzen für die Eurometropole Straßburg).
Es lässt sich festhalten, dass für die Region Offenburg zunächst die Erprobung beider Technologien, der Elektromobilität als auch der Wasserstoffmobilität, empfohlen wird. Es sollte zeitnah in den Erfahrungsaufbau in beide Technologien investiert werden. Zudem sollte bei der Elektromobilität das Flottenmanagement untersucht und evaluiert werden und bei der Wasserstoffmobilität die Möglichkeiten der Kooperation für den Aufbau der Wasserstofftankstelle. Im Rahmen der nächsten Ausschreibungsrunde für den öffentlichen Nahverkehr in Offenburg wird empfohlen, diesen emissionsfrei auszuschreiben. Es ist absehbar, dass aus Kostengründen (Kostenparität der Elektromobilität mit der Dieselvariante) als auch aus Gründen der Anforderung bzgl. der Emissionsgrenzwerte der ÖPNV emissionsfrei umgesetzt werden sollte.
Mit dem Klimaschutzgesetz 2021 wurden von der Bundesregierung die Klimaschutzvorgaben verschärft und die Treibhausgasneutralität bis 2045 als Ziel verankert. Zur Erreichung dieses ambitionierten Ziels ist es notwendig, im Bereich der Mobilität weitgehend von Verbrennungsmotoren mit fossilen Kraftstoffen auf Elektromobilität mit regenerativ erzeugtem Strom umzusteigen. Dabei ist die zügige Bereitstellung einer ausreichenden Ladeinfrastruktur für die Elektrofahrzeuge eine große Herausforderung. Neben der Installation einer ausreichend großen Zahl von Ladepunkten selbst besteht die Herausforderung darin, diese in das bestehende Verteilungsnetz zu integrieren bzw. das Verteilungsnetz so auszubauen, dass weiter ein sicherer Netzbetrieb gewährleistet werden kann. Dabei sind insbesondere Lösungen gefragt, bei denen der Ausbau der Ladeinfrastruktur und der Netzbetriebsmittel durch intelligentes Management des Ladens so gering wie möglich gehalten wird, indem vorhandene oder neu zu installierender Hardware möglichst effizient genutzt wird.
Hier setzte das Projekt „Intelligente Ladeinfrastruktur für Elektrofahrzeuge auf dem Parkplatz der Hochschule Offenburg (INTLOG)“ (Projektlaufzeit 15.11.2020 – 30.09.2022) an. Inhalt des Projekts war es, einen Ladepark für den Parkplatz der Hochschule Offenburg mit 20 Ladepunkten à 11 kW und somit einer Gesamtladeleistung von 220 kW an einen vorhandenen Ortsnetztransformator mit 200 kW Nennleistung anzuschließen, der aber bereits von anderen Verbrauchern genutzt wurde. Das übergeordnete Ziel war es also, eine Ladeinfrastruktur von maßgeblichem Umfang in die bestehende Netzinfrastruktur ohne zusätzlichen Ausbau zu integrieren.
Dabei wurden zukunftsweisende Technologien genutzt und weiterentwickelt sowie teilweise in Praxis, im Labor und in der Computersimulation demonstriert.
Im vorliegenden Beitrag wird ein Strommarktsimulationsmodell entwickelt, mit dessen Hilfe die Bereitstellung von Flexibilität auf dem Strom- und Regelleistungsmarkt in Deutschland modell-gestützt analysiert werden soll. Das Modell bildet dabei zwei parallel verlaufende, zentrale Wettbewerbsmärkte ab, an denen Akteure durch die individuelle Gebotsermittlung handeln können. Die entsprechend hierzu entwickelte Gebotslogik wird detailliert erläutert, wobei der Fokus auf der Flexibilität fossil-thermischer Kraftwerke liegt. In der anschließenden Gegen-überstellung mit realen Marktpreisen zeigt sich, dass die verwendete Methodik und die Ge-botslogik den bestehenden Markt und dessen Marktergebnis in geeigneter Form wiederspie-geln, wodurch zukünftig unterschiedlichste Flexibilitätsszenarien analysiert und Aussagen zu deren Auswirkungen auf den Markt und seine Akteure getroffen werden können.