Volltext-Downloads (blau) und Frontdoor-Views (grau)
The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 15 of 34
Back to Result List

Design and Automation of Control Panel for Hydroponic Farming

  • This research presents a comprehensive exploration of hydroponic systems and their practical applications, with a focus on innovative solutions for managing environmental and analytical sensors in hydroponic setups. Hydroponic systems, which enable soilless cultivation, have gained increasing importance in modern agriculture due to their resource-efficient and high-yield nature. The studyThis research presents a comprehensive exploration of hydroponic systems and their practical applications, with a focus on innovative solutions for managing environmental and analytical sensors in hydroponic setups. Hydroponic systems, which enable soilless cultivation, have gained increasing importance in modern agriculture due to their resource-efficient and high-yield nature. The study delves into the development and deployment of the SensVert system, an adaptable solution tailored for hydroponic environments. SensVert offers adaptability and accessibility to farmers across various agricultural domains, addressing contemporary challenges in supervising and managing environmental and analytical sensors within hydroponic setups. Leveraging LoRa technology for seamless wireless data transmission, SensVert empowers users with a feature-rich dashboard for real-time monitoring and control. The study showcases the practical implementation of SensVert through a single sensor node, seamlessly integrating temperature, humidity, pressure, light, and pH sensors. The system automates pH regulation, employing the Henderson-Hasselbalch equation, and precisely controls liquid dosing using a PID controller. At the core of SensVert lies an architecture comprising The Things Stack as the network server, Node-Red as the application server, and Grafana as the user interface. These components synergize within a local network hosted on a Raspberry Pi; effectively mitigating challenges associated with data packet transmission in areas with limited internet connectivity. As part of ongoing research, this work also paves the way for future advancements. These include the establishment of a wireless sensor network (WSN) utilizing LoRa technology, enabling seamless over-the-air sensor node updates for maintenance or replacement scenarios. These enhancements promise to further elevate the system's reliability and functionality within hydroponic cultivation, fostering sustainable agricultural practices.show moreshow less

Download full text files

  • MasterThesis_Poojan_Jariwala.pdf
    eng

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Document Type:Master's Thesis
Zitierlink: https://opus.hs-offenburg.de/7866
Bibliografische Angaben
Title (English):Design and Automation of Control Panel for Hydroponic Farming
Author:Poojan Jariwala
Advisor:Axel Sikora, Mohamed Borouah
Year of Publication:2023
Granting Institution:Hochschule Offenburg
Page Number:61
Language:English
Inhaltliche Informationen
Institutes:Fakultät Elektrotechnik, Medizintechnik und Informatik (EMI) (ab 04/2019)
Institutes:Abschlussarbeiten / Master-Studiengänge / CME
DDC classes:600 Technik, Medizin, angewandte Wissenschaften / 630 Landwirtschaft, Veterinärmedizin
600 Technik, Medizin, angewandte Wissenschaften / 620 Ingenieurwissenschaften und Maschinenbau / 621.3 Elektrotechnik, Elektronik
GND Keyword:Hydrokultur; Landwirtschaft
Tag:Hydroponic Farming; Wireless Technology
Formale Angaben
Open Access: Closed 
Licence (German):License LogoUrheberrechtlich geschützt